skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Environmental gradients mediate dispersal evolution during biological invasions
Abstract Rapid evolution of increased dispersal at the edge of a range expansion can accelerate invasions. However, populations expanding across environmental gradients often face challenging environments that reduce fitness of dispersing individuals. We used an eco‐evolutionary model to explore how environmental gradients influence dispersal evolution and, in turn, modulate the speed and predictability of invasion. Environmental gradients opposed evolution of increased dispersal during invasion, even leading to evolution of reduced dispersal along steeper gradients. Counterintuitively, reduced dispersal could allow for faster expansion by minimizing maladaptive gene flow and facilitating adaptation. While dispersal evolution across homogenous landscapes increased both the mean and variance of expansion speed, these increases were greatly dampened by environmental gradients. We illustrate our model's potential application to prediction and management of invasions by parameterizing it with data from a recent invertebrate range expansion. Overall, we find that environmental gradients strongly modulate the effect of dispersal evolution on invasion trajectories.  more » « less
Award ID(s):
2010892 1930650 2230806
PAR ID:
10547717
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology Letters
Volume:
27
Issue:
7
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Elton's biotic resistance hypothesis, which posits that diverse communities should be more resistant to biological invasions, has received considerable experimental support. However, it remains unclear whether such a negative diversity–invasibility relationship would persist under anthropogenic environmental change. By using the common ragweed (Ambrosia artemisiifolia) as a model invader, our 4‐year grassland experiment demonstrated consistently negative relationships between resident species diversity and community invasibility, irrespective of nitrogen addition, a result further supported by a meta‐analysis. Importantly, our experiment showed that plant diversity consistently resisted invasion simultaneously through increased resident biomass, increased trait dissimilarity among residents, and increased community‐weighted means of resource‐conservative traits that strongly resist invasion, pointing to the importance of both trait complementarity and sampling effects for invasion resistance even under resource enrichment. Our study provides unique evidence that considering species’ functional traits can help further our understanding of biotic resistance to biological invasions in a changing environment. 
    more » « less
  2. Abstract While community synchrony is a key framework for predicting ecological constancy, the interplay between community synchrony and ecological invasions remains unclear. Yet the degree of synchrony in a resident community may influence its resistance and resilience to the introduction of an invasive species. Here we used a generalizable mathematical framework, constructed with a modified Lotka–Volterra competition model, to first simulate resident communities across a range of competitive strengths and species' responses to environmental fluctuations, which yielded communities that ranged from strongly synchronous to compensatory. We then invaded these communities at different timesteps with invaders of varying demographic traits, after which we quantified the resident community's susceptibility to initial invasion attempts (resistance) and the degree to which community synchrony was altered after invasion (resiliency of synchrony). We found that synchronous communities were not only more resistant but also more resilient to invasion than compensatory communities, likely due to stronger competition between resident species and thus lower cumulative abundances in compensatory communities, providing greater opportunities for invasion. The growth rate of the invader was most influenced by the resident and invader competition coefficients and the growth rate of the invader species. Our findings support prioritizing the conservation of compensatory and weakly synchronous communities which may be at increased risk of invasion. 
    more » « less
  3. ABSTRACT AimThe global, human‐mediated dispersal of invasive insects is a major driver of ecosystem change, biodiversity loss, crop damage and other effects. Trade flows and invasive species propagule pressure are correlated, and their relationship is essential for predicting and managing future invasions. Invaders do not disperse exclusively from the species' native range. Instead, the bridgehead effect, where established, non‐native populations act as secondary sources of propagule, is recognised as a major driver of global invasion. The resulting pattern of global spread arises from a mixture of global interactions between invasive species, their vectors and, their invaded ranges, which has yet to be fully characterised. LocationGlobal. Time Period1997–2020. Major Taxa StudiedInsects. MethodsWe analysed 319,283 border interception records of 514 insect species from a broad range of taxa from four national‐level phytosanitary organisations. We classified interceptions as coming from species native range or from bridgehead countries and examined taxonomic autocorrelation of global movement patterns between species. ResultsWhile 65% of interceptions originated from bridgehead countries, highlighting the importance of the bridgehead effect across taxa, patterns among individual species were highly variable and taxonomically correlated. Forty per cent of species originated almost exclusively from their native range, 28% almost exclusively from their non‐native range and 32% from a mix of source locations. These patterns of global dispersal were geographically widespread, temporally consistent, and taxonomically correlated. ConclusionsDispersal exclusively from bridgeheads represents an unrecognised pattern of global insect movement; these patterns emphasise the importance of the bridgehead effect and suggest that bridgeheads provide unique local conditions that allow invaders to proliferate differently than in their native range. We connect these patterns of global dispersal to the conditions during the human driven global dispersal of insects and provide recommendations for modellers and policymakers wishing to control the spread of future invasions. 
    more » « less
  4. Abstract Understanding the movement of species’ ranges is a classic ecological problem that takes on urgency in this era of global change. Historically treated as a purely ecological process, range expansion is now understood to involve eco‐evolutionary feedbacks due to spatial genetic structure that emerges as populations spread. We synthesize empirical and theoretical work on the eco‐evolutionary dynamics of range expansion, with emphasis on bridging directional, deterministic processes that favor evolved increases in dispersal and demographic traits with stochastic processes that lead to the random fixation of alleles and traits. We develop a framework for understanding the joint influence of these processes in changing the mean and variance of expansion speed and its underlying traits. Our synthesis of recent laboratory experiments supports the consistent role of evolution in accelerating expansion speed on average, and highlights unexpected diversity in how evolution can influence variability in speed: results not well predicted by current theory. We discuss and evaluate support for three classes of modifiers of eco‐evolutionary range dynamics (landscape context, trait genetics, and biotic interactions), identify emerging themes, and suggest new directions for future work in a field that stands to increase in relevance as populations move in response to global change. 
    more » « less
  5. Invasive species impart abrupt changes on ecosystems, but their impacts on microbial communities are often overlooked. We paired a 20 y freshwater microbial community time series with zooplankton and phytoplankton counts, rich environmental data, and a 6 y cyanotoxin time series. We observed strong microbial phenological patterns that were disrupted by the invasions of spiny water flea ( Bythotrephes cederströmii ) and zebra mussels ( Dreissena polymorpha ). First, we detected shifts in Cyanobacteria phenology. After the spiny water flea invasion, Cyanobacteria dominance crept earlier into clearwater; and after the zebra mussel invasion, Cyanobacteria abundance crept even earlier into the diatom-dominated spring. During summer, the spiny water flea invasion sparked a cascade of shifting diversity where zooplankton diversity decreased and Cyanobacteria diversity increased. Second, we detected shifts in cyanotoxin phenology. After the zebra mussel invasion, microcystin increased in early summer and the duration of toxin production increased by over a month. Third, we observed shifts in heterotrophic bacteria phenology. The Bacteroidota phylum and members of the acI Nanopelagicales lineage were differentially more abundant. The proportion of the bacterial community that changed differed by season; spring and clearwater communities changed most following the spiny water flea invasion that lessened clearwater intensity, while summer communities changed least following the zebra mussel invasion despite the shifts in Cyanobacteria diversity and toxicity. A modeling framework identified the invasions as primary drivers of the observed phenological changes. These long-term invasion-mediated shifts in microbial phenology demonstrate the interconnectedness of microbes with the broader food web and their susceptibility to long-term environmental change. 
    more » « less