skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drone-based monitoring and geomorphology of southern giant petrel nests near Palmer Station, western Antarctic Peninsula
Abstract Human activities and climate change threaten seabirds globally, and many species are declining from already small breeding populations. Monitoring of breeding colonies can identify population trends and important conservation concerns, but it is a persistent challenge to achieve adequate coverage of remote and sensitive breeding sites. Southern giant petrels (Macronectes giganteus) exemplify this challenge: as polar, pelagic marine predators they are subject to a variety of anthropogenic threats, but they often breed in remote colonies that are highly sensitive to disturbance. Aerial remote sensing can overcome some of these difficulties to census breeding sites and explore how local environmental factors influence important characteristics such as nest-site selection and chick survival. To this end, we used drone photography to map giant petrel nests, repeatedly evaluate chick survival and quantify-associated physical and biological characteristics of the landscape at two neighboring breeding sites on Humble Island and Elephant Rocks, along the western Antarctic Peninsula in January–March 2020. Nest sites occurred in areas with relatively high elevations, gentle slopes, and high wind exposure, and statistical models predicted suitable nest-site locations based on local spatial characteristics, explaining 72.8% of deviance at these sites. These findings demonstrate the efficacy of drones as a tool to identify, map, and monitor seabird nests, and to quantify important habitat associations that may constitute species preferences or sensitivities. These may, in turn, contextualize some of the diverse population trajectories observed for this species throughout the changing Antarctic environment.  more » « less
Award ID(s):
2224611 2012444 2012365
PAR ID:
10499455
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Polar Biology
Volume:
47
Issue:
5
ISSN:
0722-4060
Format(s):
Medium: X Size: p. 459-474
Size(s):
p. 459-474
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Group-size variation is common in colonially breeding species, including seabirds, whose breeding colonies can vary in size by several orders of magnitude. Seabirds are some of the most threatened marine taxa and understanding the drivers of colony size variation is more important than ever. Reproductive success is an important demographic parameter that can impact colony size, and it varies in association with a number of factors, including nesting habitat quality. Within colonies, seabirds often aggregate into distinct groups or subcolonies that may vary in quality. We used data from two colonies of Adélie penguins 73 km apart on Ross Island, Antarctica, one large and one small to investigate (1) How subcolony habitat characteristics influence reproductive success and (2) How these relationships differ at a small (Cape Royds) and large (Cape Crozier) colony with different terrain characteristics. Subcolonies were characterized using terrain attributes (elevation, slope aspect, slope steepness, wind shelter, flow accumulation), as well group characteristics (area/size, perimeter-to-area ratio, and proximity to nest predators). Reproductive success was higher and less variable at the larger colony while subcolony characteristics explained more of the variance in reproductive success at the small colony. The most important variable influencing subcolony quality at both colonies was perimeter-to-area ratio, likely reflecting the importance of nest predation by south polar skuas along subcolony edges. The small colony contained a higher proportion of edge nests thus higher potential impact from skua nest predation. Stochastic environmental events may facilitate smaller colonies becoming “trapped” by nest predation: a rapid decline in the number of breeding individuals may increase the proportion of edge nests, leading to higher relative nest predation and hindering population recovery. Several terrain covariates were retained in the final models but which variables, the shapes of the relationships, and importance varied between colonies. 
    more » « less
  2. We evaluated annual and regional variation in the dietary niche of Pygoscelis penguins including the sea ice-obligate Adélie penguin ( Pygoscelis adeliae ), and sea ice-intolerant chinstrap ( Pygoscelis antarcticus ) and gentoo ( Pygoscelis papua ) penguins, three species that nest throughout the western Antarctic Peninsula (AP) to test the sea ice trophic interaction hypothesis , which posits that penguin breeding populations with divergent trends, i.e., declining or increasing, are reliant on differing food webs. Our study relies on values of naturally occurring carbon ( 13 C/ 12 C, δ 13 C) and nitrogen ( 15 N/ 14 N, δ 15 N) stable isotopes as integrated proxies of penguin food webs measured over three years at three different breeding colonies. At Anvers Island in the north, where reductions in sea ice and changes in breeding population trends among sympatric sea ice-obligate (Adélie) and sea ice-intolerant (chinstrap and gentoo) penguins have been most notable, our analyses show that all three species of Pygoscelis penguins became more similar isotopically over the reproductive period. By late chick-rearing at Anvers Island, crèched chicks at 5-weeks-old for all species occupied similar trophic positions. Isotopic mixing models indicated that the proportions of prey provisioned by adult penguins to 5-week-old chicks at Anvers Island were generally similar across species within years, consisting primarily of Antarctic krill ( Euphausia superba ). Crèched Adélie chicks had higher δ 13 C and δ 15 N values at Avian and Charcot Islands, southern breeding colonies where sea ice is more prominent and populations of Adélie penguins have increased or remain stable. Trophic position increased with latitude, while the proportions of prey provisioned by Adélie penguin adults to chicks at southern breeding colonies included species typical of high Antarctic marine food webs, especially crystal krill ( Euphausia crystallorophias ). A Bayesian metric for dietary niche width, standard ellipse area (SEA-B), indicated that Pygoscelis penguins with greater population changes in the north had more variability in dietary niche width than stable populations further south. Our results lend insight on marine food web drivers of Pygoscelis penguin reproduction at the regional scale and question the long-standing paradigm that Antarctic krill are the only food web component critical to penguin reproductive survival in this region of the Southern Ocean. 
    more » « less
  3. The Arctic Coastal Plain is one of the most important avian breeding grounds in the world; however, many species are in decline. Arctic‐breeding birds contend with short breeding seasons, harsh climatic conditions, and now, rapidly changing, variable, and unpredictable environmental conditions caused by climate change. Additionally, those breeding in industrial areas may be impacted by human activities. It is difficult to separate the impacts of industrial development and climate change; however, long‐term datasets can help show patterns over time. We evaluated factors influencing reproductive parameters of breeding birds at Prudhoe Bay, Alaska, 2003–2019, by monitoring 1265 shorebird nests, 378 passerine nests, and 231 waterfowl nests. We found that nest survival decreased significantly nearer high‐use infrastructure for all guilds. Temporally, passerine nest survival declined across the 17 years of the study, while there was no significant evidence of change in their nest density. Shorebird nest survival did not vary significantly across years, nor did nest density. Waterfowl nest density increased over the course of the study, but we could not estimate nest survival in all years. Egg predator populations varied across time; numbers of gulls and ravens increased in the oilfields 2003–2019, while Arctic fox decreased, and jaeger numbers did not vary significantly. Long‐term datasets are rare in the Arctic, but they are crucial for understanding impacts to breeding birds from both climate change and increasing anthropogenic activities. We show that nest survival was lower for birds nesting closer to high‐use infrastructure in Arctic Alaska, which was not detected in earlier, shorter‐term studies. Additionally, we show that Lapland longspur nest survival decreased across time, in concert with continent‐wide declines in many passerine species. The urgency to understand these relationships cannot be expressed strongly enough, given change is continuing to happen and the potential impacts are large. 
    more » « less
  4. Abstract The reproductive success of birds is closely tied to the characteristics of their nests. It is crucial to understand the distribution of nest traits across phylogenetic and geographic dimensions to gain insight into bird evolution and adaptation. Despite the extensive historical documentation on breeding behavior, a structured dataset describing bird nest characteristics has been lacking. To address this gap, we have compiled a comprehensive dataset that characterizes three ecologically and evolutionarily significant nest traits—site, structure, and attachment—for 9,248 bird species, representing all 36 orders and 241 out of the 244 families. By defining seven sites, seven structures, and four attachment types, we have systematically classified the nests of each species using information from text descriptions, photos, and videos sourced from online databases and literature. This nest traits dataset serves as a valuable addition to the existing body of morphological and ecological trait data for bird species, providing a useful resource for a wide range of avian macroecological and macroevolutionary research. 
    more » « less
  5. Romanach, Stephanie S (Ed.)
    Atlantic ghost crabs (Ocypode quadrata) are predators of beach-nesting shorebird nests and chicks on the United States’ Atlantic and Gulf coasts. Ghost crabs may also disturb birds, altering foraging, habitat use, or nest and brood attendance patterns. Shorebird conservation strategies often involve predator and disturbance management to improve reproductive success, but efforts rarely target ghost crabs. Despite the threat to shorebird reproductive success, ghost crabs are a poorly understood part of the beach ecosystem and additional knowledge about ghost crab habitat selection is needed to inform shorebird conservation. We monitored ghost crab activity, defined as burrow abundance, throughout the shorebird breeding season on Metompkin Island, Virginia, an important breeding site for piping plovers (Charadrius melodus) and American oystercatchers (Haematopus palliatus). We counted burrows at shorebird nests and random locations throughout the breeding season and investigated whether ghost crab activity was greater at nest sites relative to random locations without shorebird nests. While we observed burrows at all nest sites (n= 63 nests), we found that burrow counts were lower at piping plover nests with shell cover, relative to random locations with no shell cover. Ghost crabs may avoid piping plover nest sites due to anti-predator behaviors from incubating adults or differences in microhabitat characteristics selected by piping plovers. We also investigated the effects of habitat type, date, and air temperature on the abundance of ghost crab burrows. We found that while crab burrows were present across the barrier island landscape, there were more burrows in sandy, undisturbed habitats behind the dunes, relative to wave-disturbed beach. Additionally, ghost crab activity increased later in the shorebird breeding season. Understanding when and where ghost crabs are most likely to be active in the landscape can aid decision-making to benefit imperiled shorebird populations. 
    more » « less