null
(Ed.)
In this article, we model implicit attitude measures using our network theory of attitudes. The model rests on the assumption that implicit measures limit attitudinal entropy reduction, because implicit measures represent a measurement outcome that is the result of evaluating the attitude object in a quick and effortless manner. Implicit measures therefore assess attitudes in high entropy states (i.e., inconsistent and unstable states). In a simulation, we illustrate the implications of our network theory for implicit measures. The results of this simulation show a paradoxical result: Implicit measures can provide a more accurate assessment of conflicting evaluative reactions to an attitude object (e.g., evaluative reactions not in line with the dominant evaluative reactions) than explicit measures, because they assess these properties in a noisier and less reliable manner. We conclude that our network theory of attitudes increases the connection between substantive theorizing on attitudes and psychometric properties of implicit measures.
more »
« less