Abstract Energetic electron precipitation into Earth's atmosphere is an important process for radiation belt dynamics and magnetosphere‐ionosphere coupling. The most intense form of such precipitation is microbursts—short‐lived bursts of precipitating fluxes detected on low‐altitude spacecraft. Due to the wide energy range of microbursts (from sub‐relativistic to relativistic energies) and their transient nature, they are thought to be predominantly associated with energetic electron scattering into the loss cone via cyclotron resonance with field‐aligned intense whistler‐mode chorus waves. In this study, we show that intense sub‐relativistic microbursts may be generated via electron nonlinear Landau resonance with very oblique whistler‐mode waves. We combine a theoretical model of nonlinear Landau resonance, equatorial observations of intense very oblique whistler‐mode waves, and conjugate low‐altitude observations of <200 keV electron precipitation. Based on model comparison with observed precipitation, we suggest that such sub‐relativistic microbursts occur by plasma sheet (0.1 − 10 keV) electron trapping in nonlinear Landau resonance, resulting in acceleration to ≲200 keV energies and simultaneous transport into the loss cone. The proposed scenario of intense sub‐relativistic (≲200 keV) microbursts demonstrates the importance of very oblique whistler‐mode waves for radiation belt dynamics.
more »
« less
Lightning-induced relativistic electron precipitation from the inner radiation belt
Abstract The Earth’s radiation belts are maintained by a number of acceleration, loss and transport mechanisms, and the electron fluxes at any given time are highly variable. Microbursts, which are rapid (sub-second) bursts of energetic electrons entering the atmosphere from the magnetosphere, are one of the key loss mechanisms controlling radiation belt fluxes. Such rapid bursts are typically observed from the outer radiation belt and driven by interactions with whistler mode chorus waves, but they can also occur in the inner belt and slot region, driven by lightning-generated whistlers. This lightning-induced electron precipitation is typically observed at 10s–100s keV, but here we present direct observations of this phenomenon at MeV energies. This unveils a coupling between near-Earth processes, such as lightning, and radiation belt processes, such as relativistic electron microbursts, bridging the gap between Earth weather and space weather.
more »
« less
- Award ID(s):
- 2123253
- PAR ID:
- 10547837
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract During magnetospheric storms, radiation belt electrons are produced and then removed by collisions with the lower atmosphere on varying timescales. An efficient loss process is microbursts, strong, transient precipitation of electrons over a wide energy range, from tens of keV to sub‐relativistic and relativistic energies (100s keV and above). However, the detailed generation mechanism of microbursts, especially over sub‐relativistic and relativistic energies, remains unknown. Here, we show that these energetic electron microbursts may be caused by ducted whistler‐mode lower‐band chorus waves. Using observations of equatorial chorus waves nearby low‐altitude precipitation as well as data‐driven simulations, we demonstrate that the observed microbursts are the result of resonant interaction of electrons with ducted chorus waves rather than nonducted ones. Revealing the physical mechanism behind the microbursts advances our understanding of radiation belt dynamics and its impact on the lower atmosphere and space weather.more » « less
-
Abstract The strong variations of energetic electron fluxes in the Earth's inner magnetosphere are notoriously hard to forecast. Developing accurate empirical models of electron fluxes from low to high altitudes at all latitudes is therefore useful to improve our understanding of flux variations and to assess radiation hazards for spacecraft systems. In the present work, energy‐ and pitch‐angle‐resolved precipitating, trapped, and backscattered electron fluxes measured at low altitude by Electron Loss and Fields Investigation (ELFIN) CubeSats are used to infer omnidirectional fluxes at altitudes below and above the spacecraft, from 150 to 20,000 km, making use of adiabatic transport theory and quasi‐linear diffusion theory. The inferred fluxes are fitted as a function of selected parameters using a stepwise multivariate optimization procedure, providing an analytical model of omnidirectional electron flux along each geomagnetic field line, based on measurements from only one spacecraft in low Earth orbit. The modeled electron fluxes are provided as a function of ‐shell, altitude, energy, and two different indices of past substorm activity, computed over the preceding 4 hr or 3 days, potentially allowing to disentangle impulsive processes (such as rapid injections) from cumulative processes (such as inward radial diffusion and wave‐driven energization). The model is validated through comparisons with equatorial measurements from the Van Allen Probes, demonstrating the broad applicability of the present method. The model indicates that both impulsive and time‐integrated substorm activity partly control electron fluxes in the outer radiation belt and in the plasma sheet.more » « less
-
Abstract Relativistic microbursts are impulsive, sub‐second precipitation bursts of relativistic electrons. They are one of the main loss mechanisms of outer radiation belt electrons, and are driven by chorus waves. The scale size of relativistic microbursts is still not fully understood. In this work a global modeling of the microburst spatial distribution is conducted to study the scale size of relativistic microburst induced by chorus waves. A primary precipitation burst is induced near the source region by quasi‐parallel waves, and a secondary precipitation (SP) is induced on higher L‐shells by further‐propagating, oblique waves. The SP has a significant scale size even with a point‐source assumption because of wave spreading due to propagation effect. The secondary relativistic microburst scale size is ∼40(20) km on the counter (co)‐streaming side, consistent with previous observations. Our modeling results indicate chorus wave propagation effects are one of the primary factors controlling the relativistic microburst scale size.more » « less
-
Abstract Although the effects of electromagnetic ion cyclotron (EMIC) waves on the dynamics of the Earth's outer radiation belt have been a topic of intense research for more than 20 years, their influence on rapid dropouts of electron flux has not yet been fully assessed. Here, we make use of contemporaneous measurements on the same ‐shell of trapped electron fluxes at 20,000 km altitude by Global Positioning System (GPS) spacecraft and of trapped and precipitating electron fluxes at 450 km altitude by Electron Losses and Fields Investigation (ELFIN) CubeSats in 2020–2022, to investigate the impact of EMIC wave‐driven electron precipitation on the dynamics of the outer radiation belt below the last closed drift shell of trapped electrons. During six of the seven selected events, the strong 1–2 MeV electron precipitation measured at ELFIN, likely driven by EMIC waves, occurs within 1–2 hr from a dropout of relativistic electron flux at GPS spacecraft. Using quasi‐linear diffusion theory, EMIC wave‐driven pitch angle diffusion rates are inferred from ELFIN measurements, allowing us to quantitatively estimate the corresponding flux drop based on typical spatial and temporal extents of EMIC waves. We find that EMIC wave‐driven electron precipitation alone can account for the observed dropout magnitude at 1.5–3 MeV during all events and that, when dropouts extend down to 0.5 MeV, a fraction of electron loss may sometimes be due to EMIC waves. This suggests that EMIC wave‐driven electron precipitation could modulate dropout magnitude above 1 MeV in the heart of the outer radiation belt.more » « less