skip to main content


Title: Ducted Chorus Waves Cause Sub‐Relativistic and Relativistic Electron Microbursts
Abstract

During magnetospheric storms, radiation belt electrons are produced and then removed by collisions with the lower atmosphere on varying timescales. An efficient loss process is microbursts, strong, transient precipitation of electrons over a wide energy range, from tens of keV to sub‐relativistic and relativistic energies (100s keV and above). However, the detailed generation mechanism of microbursts, especially over sub‐relativistic and relativistic energies, remains unknown. Here, we show that these energetic electron microbursts may be caused by ducted whistler‐mode lower‐band chorus waves. Using observations of equatorial chorus waves nearby low‐altitude precipitation as well as data‐driven simulations, we demonstrate that the observed microbursts are the result of resonant interaction of electrons with ducted chorus waves rather than nonducted ones. Revealing the physical mechanism behind the microbursts advances our understanding of radiation belt dynamics and its impact on the lower atmosphere and space weather.

 
more » « less
Award ID(s):
1242918 2019914
PAR ID:
10444145
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
5
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Energetic electron precipitation into Earth's atmosphere is an important process for radiation belt dynamics and magnetosphere‐ionosphere coupling. The most intense form of such precipitation is microbursts—short‐lived bursts of precipitating fluxes detected on low‐altitude spacecraft. Due to the wide energy range of microbursts (from sub‐relativistic to relativistic energies) and their transient nature, they are thought to be predominantly associated with energetic electron scattering into the loss cone via cyclotron resonance with field‐aligned intense whistler‐mode chorus waves. In this study, we show that intense sub‐relativistic microbursts may be generated via electron nonlinear Landau resonance with very oblique whistler‐mode waves. We combine a theoretical model of nonlinear Landau resonance, equatorial observations of intense very oblique whistler‐mode waves, and conjugate low‐altitude observations of <200 keV electron precipitation. Based on model comparison with observed precipitation, we suggest that such sub‐relativistic microbursts occur by plasma sheet (0.1 − 10 keV) electron trapping in nonlinear Landau resonance, resulting in acceleration to ≲200 keV energies and simultaneous transport into the loss cone. The proposed scenario of intense sub‐relativistic (≲200 keV) microbursts demonstrates the importance of very oblique whistler‐mode waves for radiation belt dynamics.

     
    more » « less
  2. Abstract

    The Earth’s radiation belts are maintained by a number of acceleration, loss and transport mechanisms, and the electron fluxes at any given time are highly variable. Microbursts, which are rapid (sub-second) bursts of energetic electrons entering the atmosphere from the magnetosphere, are one of the key loss mechanisms controlling radiation belt fluxes. Such rapid bursts are typically observed from the outer radiation belt and driven by interactions with whistler mode chorus waves, but they can also occur in the inner belt and slot region, driven by lightning-generated whistlers. This lightning-induced electron precipitation is typically observed at 10s–100s keV, but here we present direct observations of this phenomenon at MeV energies. This unveils a coupling between near-Earth processes, such as lightning, and radiation belt processes, such as relativistic electron microbursts, bridging the gap between Earth weather and space weather.

     
    more » « less
  3. Abstract

    Whistler‐mode chorus waves are critical for driving resonant scattering and loss of radiation belt relativistic electrons into the atmosphere. The resonant energies of electrons scattered by chorus waves increase at increasingly higher magnetic latitudes. Propagation of chorus waves to middle and high latitudes is hampered by wave divergence and Landau damping but is promoted otherwise if ducted by density irregularities. Although ducting theories have been proposed since the 1960s, no conjugate observation of ducted chorus propagation from the equatorial magnetosphere to the ionosphere has been observed so far. Here we provide such an observation, for the first time, using conjugate spacecraft measurements. Ducted chorus waves maintain significant wave power upon reaching the ionosphere, which is confirmed by ray‐tracing simulations. Our results suggest that ducted chorus waves may be an important driver for relativistic electron precipitation.

     
    more » « less
  4. Abstract

    Relativistic microbursts are impulsive, sub‐second precipitation bursts of relativistic electrons. They are one of the main loss mechanisms of outer radiation belt electrons, and are driven by chorus waves. The scale size of relativistic microbursts is still not fully understood. In this work a global modeling of the microburst spatial distribution is conducted to study the scale size of relativistic microburst induced by chorus waves. A primary precipitation burst is induced near the source region by quasi‐parallel waves, and a secondary precipitation (SP) is induced on higher L‐shells by further‐propagating, oblique waves. The SP has a significant scale size even with a point‐source assumption because of wave spreading due to propagation effect. The secondary relativistic microburst scale size is ∼40(20) km on the counter (co)‐streaming side, consistent with previous observations. Our modeling results indicate chorus wave propagation effects are one of the primary factors controlling the relativistic microburst scale size.

     
    more » « less
  5. Abstract

    Resonant interactions of energetic electrons with electromagnetic whistler‐mode waves (whistlers) contribute significantly to the dynamics of electron fluxes in Earth's outer radiation belt. At low geomagnetic latitudes, these waves are very effective in pitch angle scattering and precipitation into the ionosphere of low equatorial pitch angle, tens of keV electrons and acceleration of high equatorial pitch angle electrons to relativistic energies. Relativistic (hundreds of keV), electrons may also be precipitated by resonant interaction with whistlers, but this requires waves propagating quasi‐parallel without significant intensity decrease to high latitudes where they can resonate with higher energy low equatorial pitch angle electrons than at the equator. Wave propagation away from the equatorial source region in a non‐uniform magnetic field leads to ray divergence from the originally field‐aligned direction and efficient wave damping by Landau resonance with suprathermal electrons, reducing the wave ability to scatter electrons at high latitudes. However, wave propagation can become ducted along field‐aligned density peaks (ducts), preventing ray divergence and wave damping. Such ducting may therefore result in significant relativistic electron precipitation. We present evidence that ducted whistlers efficiently precipitate relativistic electrons. We employ simultaneous near‐equatorial and ground‐based measurements of whistlers and low‐altitude electron precipitation measurements by ELFIN CubeSat. We show that ducted waves (appearing on the ground) efficiently scatter relativistic electrons into the loss cone, contrary to non‐ducted waves (absent on the ground) precipitating onlykeV electrons. Our results indicate that ducted whistlers may be quite significant for relativistic electron losses; they should be further studied statistically and possibly incorporated in radiation belt models.

     
    more » « less