Optimizing material compositions often enhances thermoelectric performances. However, the large selection of possible base elements and dopants results in a vast composition design space that is too large to systematically search using solely domain knowledge. To address this challenge, a hybrid data‐driven strategy that integrates Bayesian optimization (BO) and Gaussian process regression (GPR) is proposed to optimize the composition of five elements (Ag, Se, S, Cu, and Te) in AgSe‐based thermoelectric materials. Data is collected from the literature to provide prior knowledge for the initial GPR model, which is updated by actively collected experimental data during the iteration between BO and experiments. Within seven iterations, the optimized AgSe‐based materials prepared using a simple high‐throughput ink mixing and blade coating method deliver a high power factor of 2100 µW m−1K−2, which is a 75% improvement from the baseline composite (nominal composition of Ag2Se1). The success of this study provides opportunities to generalize the demonstrated active machine learning technique to accelerate the development and optimization of a wide range of material systems with reduced experimental trials.
This content will become publicly available on August 28, 2025
Current research practice for optimizing bioink involves exhaustive experimentation with multi-material composition for determining the printability, shape fidelity and biocompatibility. Predicting bioink properties can be beneficial to the research community but is a challenging task due to the non-Newtonian behavior in complex composition. Existing models such as Cross model become inadequate for predicting the viscosity for heterogeneous composition of bioinks. In this paper, we utilize a machine learning framework to accurately predict the viscosity of heterogeneous bioink compositions, aiming to enhance extrusion-based bioprinting techniques. Utilizing Bayesian optimization (BO), our strategy leverages a limited dataset to inform our model. This is a technique especially useful of the typically sparse data in this domain. Moreover, we have also developed a mask technique that can handle complex constraints, informed by domain expertise, to define the feasible parameter space for the components of the bioink and their interactions. Our proposed method is focused on predicting the intrinsic factor (e.g. viscosity) of the bioink precursor which is tied to the extrinsic property (e.g. cell viability) through the mask function. Through the optimization of the hyperparameter, we strike a balance between exploration of new possibilities and exploitation of known data, a balance crucial for refining our acquisition function. This function then guides the selection of subsequent sampling points within the defined viable space and the process continues until convergence is achieved, indicating that the model has sufficiently explored the parameter space and identified the optimal or near-optimal solutions. Employing this AI-guided BO framework, we have developed, tested, and validated a surrogate model for determining the viscosity of heterogeneous bioink compositions. This data-driven approach significantly reduces the experimental workload required to identify bioink compositions conducive to functional tissue growth. It not only streamlines the process of finding the optimal bioink compositions from a vast array of heterogeneous options but also offers a promising avenue for accelerating advancements in tissue engineering by minimizing the need for extensive experimental trials.
more » « less- PAR ID:
- 10547921
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Biofabrication
- Volume:
- 16
- Issue:
- 4
- ISSN:
- 1758-5082
- Page Range / eLocation ID:
- 045031
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Next-generation scientific applications in various fields are experiencing a rapid transition from traditional experiment-based methodologies to large-scale computation-intensive simulations featuring complex numerical modeling with a large number of tunable parameters. Such model-based simulations generate colossal amounts of data, which are then processed and analyzed against experimental or observation data for parameter calibration and model validation. The sheer volume and complexity of such data, the large model-parameter space, and the intensive computation make it practically infeasible for domain experts to manually configure and tune hyperparameters for accurate modeling in complex and distributed computing environments. This calls for an online computational steering service to enable real-time multi-user interaction and automatic parameter tuning. Towards this goal, we design and develop a generic steering framework based on Bayesian Optimization (BO) and conduct theoretical performance analysis of the steering service. We present a case study with the Weather Research and Forecast (WRF) model, which illustrates the performance superiority of the BO-based tuning over other heuristic methods and manual settings of domain experts using regret analysis.more » « less
-
Machine learning-based inverse materials discovery has attracted enormous attention recently due to its flexibility in dealing with black box models. Yet, many metaheuristic algorithms are not as widely applied to materials discovery applications as machine learning methods. There are ongoing challenges in applying different optimization algorithms to discover materials with single- or multi-elemental compositions and how these algorithms differ in mining the ideal materials. We comprehensively compare 11 different optimization algorithms for the design of single- and multi-elemental crystals with targeted properties. By maximizing the bulk modulus and minimizing the Fermi energy through perturbing the parameterized elemental composition representations, we estimated the unique counts of elemental compositions, mean density scan of the objectives space, mean objectives, and frequency distributed over the materials’ representations and objectives. We found that nature-inspired algorithms contain more uncertainties in the defined elemental composition design tasks, which correspond to their dependency on multiple hyperparameters. Runge–Kutta optimization (RUN) exhibits higher mean objectives, whereas Bayesian optimization (BO) displayed low mean objectives compared with other methods. Combined with materials count and density scan, we propose that BO strives to approximate a more accurate surrogate of the design space by sampling more elemental compositions and hence have lower mean objectives, yet RUN will repeatedly sample the targeted elemental compositions with higher objective values. Our work sheds light on the automated digital design of materials with single- and multi-elemental compositions and is expected to elicit future studies on materials optimization, such as composite and alloy design based on specific desired properties.
-
Bayesian optimization (BO) has well-documented merits for optimizing black-box functions with an expensive evaluation cost. Such functions emerge in applications as diverse as hyperparameter tuning, drug discovery, and robotics. BO hinges on a Bayesian surrogate model to sequentially select query points so as to balance exploration with exploitation of the search space. Most existing works rely on a single Gaussian process (GP) based surrogate model, where the kernel function form is typically preselected using domain knowledge. To bypass such a design process, this paper leverages an ensemble (E) of GPs to adaptively select the surrogate model fit on-the-fly, yielding a GP mixture posterior with enhanced expressiveness for the sought function. Acquisition of the next evaluation input using this EGP-based function posterior is then enabled by Thompson sampling (TS) that requires no additional design parameters. To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model. The novel EGP-TS readily accommodates parallel operation. To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret for both sequential and parallel settings. Tests on synthetic functions and real-world applications showcase the merits of the proposed method.more » « less
-
A major challenge in tissue engineering is the formation of vasculature in tissue and organs. Recent studies have shown that positively charged microspheres promote vascularization, while also supporting the controlled release of bioactive molecules. This study investigated the development of gelatin-coated pectin microspheres for incorporation into a novel bioink. Electrospray was used to produce the microspheres. The process was optimized using Design-Expert® software. Microspheres underwent gelatin coating and EDC catalysis modifications. The results showed that the concentration of pectin solution impacted roundness and uniformity primarily, while flow rate affected size most significantly. The optimal gelatin concentration for microsphere coating was determined to be 0.75%, and gelatin coating led to a positively charged surface. When incorporated into bioink, the microspheres did not significantly alter viscosity, and they distributed evenly in bioink. These microspheres show great promise for incorporation into bioink for tissue engineering applications.more » « less