Abstract Stars in an open cluster are assumed to have formed from a broadly homogeneous distribution of gas, implying that they should be chemically homogeneous. Quantifying the level to which open clusters are chemically homogeneous can therefore tell us about interstellar medium pollution and gas mixing in progenitor molecular clouds. Using Sloan Digital Sky Survey (SDSS)-V Milky Way Mapper and SDSS-IV Apache Point Observatory Galaxy Evolution Experiment DR17 abundances, we test this assumption by quantifying intrinsic chemical scatter in up to 20 different chemical abundances across 26 Milky Way open clusters. We find that we can place 3σupper limits on open cluster homogeneity within 0.02 dex or less in the majority of elements, while for neutron capture elements, as well as those elements having weak lines, we place limits on their homogeneity within 0.2 dex. Finally, we find that giant stars in open clusters are ∼0.01 dex more homogeneous than a matched sample of field stars.
more »
« less
A Comprehensive Study of Open Cluster Chemical Homogeneity using APOGEE and Milky Way Mapper Abundances
Stars in an open cluster are assumed to have formed from a broadly homogeneous distribution of gas, implying that they should be chemically homogeneous. Quantifying the level to which open clusters are chemically homogeneous can therefore tell us about ISM pollution and gas-mixing in progenitor molecular clouds. Using SDSS-V Milky Way Mapper and SDSS-IV APOGEE DR17 abundances, we test this assumption by quantifying intrinsic chemical scatter in up to 20 different chemical abundances across 26 Milky Way open clusters. We find that we can place 3σ upper limits on open cluster homogeneity within 0.02 dex or less in the majority of elements, while for neutron capture elements, as well as those elements having weak lines, we place limits on their homogeneity within 0.2 dex. Finally, we find that giant stars in open clusters are ~0.01 dex more homogeneous than a matched sample of field stars.
more »
« less
- Award ID(s):
- 2206543
- PAR ID:
- 10548004
- Publisher / Repository:
- Astrophysical Journal
- Date Published:
- Journal Name:
- Astrophysical journal
- ISSN:
- 1538-4357
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT One of the high-level goals of Galactic archaeology is chemical tagging of stars across the Milky Way to piece together its assembly history. For this to work, stars born together must be uniquely chemically homogeneous. Wide binary systems are an important laboratory to test this underlying assumption. Here, we present the detailed chemical abundance patterns of 50 stars across 25 wide binary systems comprised of main-sequence stars of similar spectral type identified in Gaia DR2 with the aim of quantifying their level of chemical homogeneity. Using high-resolution spectra obtained with McDonald Observatory, we derive stellar atmospheric parameters and precise detailed chemical abundances for light/odd-Z (Li, C, Na, Al, Sc, V, Cu), α (Mg, Si, Ca), Fe-peak (Ti, Cr, Mn, Fe, Co, Ni, Zn), and neutron capture (Sr, Y, Zr, Ba, La, Nd, Eu) elements. Results indicate that 80 per cent (20 pairs) of the systems are homogeneous in [Fe/H] at levels below 0.02 dex. These systems are also chemically homogeneous in all elemental abundances studied, with offsets and dispersions consistent with measurement uncertainties. We also find that wide binary systems are far more chemically homogeneous than random pairings of field stars of similar spectral type. These results indicate that wide binary systems tend to be chemically homogeneous but in some cases they can differ in their detailed elemental abundances at a level of [X/H] ∼ 0.10 dex, overall implying chemical tagging in broad strokes can work.more » « less
-
Abstract Observations of the Milky Way’s low- α disk show that several element abundances correlate with age at fixed metallicity, with unique slopes and small scatters around the age–[X/Fe] relations. In this study, we turn to simulations to explore the age–[X/Fe] relations for the elements C, N, O, Mg, Si, S, and Ca that are traced in a FIRE-2 cosmological zoom-in simulation of a Milky Way–like galaxy, m12i, and understand what physical conditions give rise to the observed age–[X/Fe] trends. We first explore the distributions of mono-age populations in their birth and current locations, [Fe/H], and [X/Fe], and find evidence for inside-out radial growth for stars with ages <7 Gyr. We then examine the age–[X/Fe] relations across m12i’s disk and find that the direction of the trends agrees with observations, apart from C, O, and Ca, with remarkably small intrinsic scatters, σ int (0.01 − 0.04 dex). This σ int measured in the simulations is also metallicity dependent, with σ int ≈ 0.025 dex at [Fe/H] = −0.25 dex versus σ int ≈ 0.015 dex at [Fe/H] = 0 dex, and a similar metallicity dependence is seen in the GALAH survey for the elements in common. Additionally, we find that σ int is higher in the inner galaxy, where stars are older and formed in less chemically homogeneous environments. The age–[X/Fe] relations and the small scatter around them indicate that simulations capture similar chemical enrichment variance as observed in the Milky Way, arising from stars sharing similar element abundances at a given birth place and time.more » « less
-
Abstract We present spectroscopy of the ultra-faint Milky Way satellites Eridanus III (Eri III) and DELVE 1. We identify eight member stars in each satellite and place nonconstraining upper limits on their velocity and metallicity dispersions. The brightest star in each object is very metal poor, at [Fe/H] = −3.1 for Eri III and [Fe/H] = −2.8 for DELVE 1. Both of these stars exhibit large overabundances of carbon and very low abundances of the neutron-capture elements Ba and Sr, and we classify them as CEMP-no stars. Because their metallicities are well below those of the Milky Way globular cluster population, and because no CEMP-no stars have been identified in globular clusters, these chemical abundances could suggest that Eri III and DELVE 1 are dwarf galaxies. On the other hand, the two systems have half-light radii of 8 pc and 6 pc, respectively, which are more compact than any known ultra-faint dwarfs. We conclude that Eri III and DELVE 1 are either the smallest dwarf galaxies yet discovered, or they are representatives of a new class of star clusters that underwent chemical evolution distinct from that of ordinary globular clusters. In the latter scenario, such objects are likely the most primordial star clusters surviving today. These possibilities can be distinguished by future measurements of carbon and/or iron abundances for larger samples of stars or improved stellar kinematics for the two systems.more » « less
-
ABSTRACT The advent of Gaia has led to the discovery of nearly 300 elongated stellar associations (called ‘strings’) spanning hundreds of parsecs in length and mere tens of parsecs in width. These newfound populations present an excellent laboratory for studying the assembly process of the Milky Way thin disc. In this work, we use data from GALAH DR3 to investigate the chemical distributions and ages of 18 newfound stellar populations, 10 of which are strings and 8 of which are compact in morphology. We estimate the intrinsic abundance dispersions in [X/H] of each population and compare them with those of both their local fields and the open cluster (OC) M 67. We find that all but one of these groups are more chemically homogeneous than their local fields. Furthermore, half of the strings, namely Theias 139, 169, 216, 303, and 309, have intrinsic [X/H] dispersions that range between 0.01 and 0.07 dex in most elements, equivalent to those of many OCs. These results provide important new observational constraints on star formation and the chemical homogeneity of the local interstellar medium (ISM). We investigate each population’s Li and chemical clock abundances (e.g. [Sc/Ba], [Ca/Ba], [Ti/Ba], and [Mg/Y]) and find that the ages suggested by chemistry generally support the isochronal ages in all but six structures. This work highlights the unique advantages that chemistry holds in the study of kinematically related stellar groups.more » « less
An official website of the United States government

