skip to main content


This content will become publicly available on October 9, 2025

Title: A nonlinear least-squares convexity enforcing 𝐶⁰ interior penalty method for the Monge–Ampère equation on strictly convex smooth planar domains

We construct a nonlinear least-squares finite element method for computing the smooth convex solutions of the Dirichlet boundary value problem of the Monge-Ampère equation on strictly convex smooth domains inR2{\mathbb {R}}^2. It is based on an isoparametricC0C^0finite element space with exotic degrees of freedom that can enforce the convexity of the approximate solutions.A priorianda posteriorierror estimates together with corroborating numerical results are presented.

 
more » « less
PAR ID:
10548093
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Mathematical Society (AMS)
Date Published:
Journal Name:
Communications of the American Mathematical Society
Volume:
4
Issue:
14
ISSN:
2692-3688
Format(s):
Medium: X Size: p. 607-640
Size(s):
p. 607-640
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we derive the best constant for the followingL∞<#comment/>L^{\infty }-type Gagliardo-Nirenberg interpolation inequality‖<#comment/>u‖<#comment/>L∞<#comment/>≤<#comment/>Cq,∞<#comment/>,p‖<#comment/>u‖<#comment/>Lq+11−<#comment/>θ<#comment/>‖<#comment/>∇<#comment/>u‖<#comment/>Lpθ<#comment/>,θ<#comment/>=pddp+(p−<#comment/>d)(q+1),\begin{equation*} \|u\|_{L^{\infty }}\leq C_{q,\infty ,p} \|u\|^{1-\theta }_{L^{q+1}}\|\nabla u\|^{\theta }_{L^p},\quad \theta =\frac {pd}{dp+(p-d)(q+1)}, \end{equation*}where parametersqqandppsatisfy the conditionsp>d≥<#comment/>1p>d\geq 1,q≥<#comment/>0q\geq 0. The best constantCq,∞<#comment/>,pC_{q,\infty ,p}is given byCq,∞<#comment/>,p=θ<#comment/>−<#comment/>θ<#comment/>p(1−<#comment/>θ<#comment/>)θ<#comment/>pMc−<#comment/>θ<#comment/>d,Mc∫<#comment/>Rduc,∞<#comment/>q+1dx,\begin{equation*} C_{q,\infty ,p}=\theta ^{-\frac {\theta }{p}}(1-\theta )^{\frac {\theta }{p}}M_c^{-\frac {\theta }{d}},\quad M_c≔\int _{\mathbb {R}^d}u_{c,\infty }^{q+1} dx, \end{equation*}whereuc,∞<#comment/>u_{c,\infty }is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds whenu=Auc,∞<#comment/>(λ<#comment/>(x−<#comment/>x0))u=Au_{c,\infty }(\lambda (x-x_0))for any real numbersAA,λ<#comment/>>0\lambda >0andx0∈<#comment/>Rdx_{0}\in \mathbb {R}^d. In fact, the generalized Lane-Emden equation inRd\mathbb {R}^dcontains a delta function as a source and it is a Thomas-Fermi type equation. Forq=0q=0ord=1d=1,uc,∞<#comment/>u_{c,\infty }have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show thatuc,m→<#comment/>uc,∞<#comment/>u_{c,m}\to u_{c,\infty }andCq,m,p→<#comment/>Cq,∞<#comment/>,pC_{q,m,p}\to C_{q,\infty ,p}asm→<#comment/>+∞<#comment/>m\to +\inftyford=1d=1, whereuc,mu_{c,m}andCq,m,pC_{q,m,p}are the function achieving equality and the best constant ofLmL^m-type Gagliardo-Nirenberg interpolation inequality, respectively.

     
    more » « less
  2. For each odd integern≥<#comment/>3n \geq 3, we construct a rank-3 graphΛ<#comment/>n\Lambda _nwith involutionγ<#comment/>n\gamma _nwhose realC∗<#comment/>C^*-algebraCR∗<#comment/>(Λ<#comment/>n,γ<#comment/>n)C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda _n, \gamma _n)is stably isomorphic to the exotic Cuntz algebraEn\mathcal E_n. This construction is optimal, as we prove that a rank-2 graph with involution(Λ<#comment/>,γ<#comment/>)(\Lambda ,\gamma )can never satisfyCR∗<#comment/>(Λ<#comment/>,γ<#comment/>)∼<#comment/>MEEnC^*_{\scriptscriptstyle \mathbb {R}}(\Lambda , \gamma )\sim _{ME} \mathcal E_n, and Boersema reached the same conclusion for rank-1 graphs (directed graphs) in [Münster J. Math.10(2017), pp. 485–521, Corollary 4.3]. Our construction relies on a rank-1 graph with involution(Λ<#comment/>,γ<#comment/>)(\Lambda , \gamma )whose realC∗<#comment/>C^*-algebraCR∗<#comment/>(Λ<#comment/>,γ<#comment/>)C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda , \gamma )is stably isomorphic to the suspensionSRS \mathbb {R}. In the Appendix, we show that theii-fold suspensionSiRS^i \mathbb {R}is stably isomorphic to a graph algebra iff−<#comment/>2≤<#comment/>i≤<#comment/>1-2 \leq i \leq 1.

     
    more » « less
  3. LetΩ<#comment/>+⊂<#comment/>Rn+1\Omega ^+\subset \mathbb {R}^{n+1}be a boundedδ<#comment/>\delta-Reifenberg flat domain, withδ<#comment/>>0\delta >0small enough, possibly with locally infinite surface measure. Assume also thatΩ<#comment/>−<#comment/>=Rn+1∖<#comment/>Ω<#comment/>+¯<#comment/>\Omega ^-= \mathbb {R}^{n+1}\setminus \overline {\Omega ^+}is an NTA (non-tangentially accessible) domain as well and denote byω<#comment/>+\omega ^+andω<#comment/>−<#comment/>\omega ^-the respective harmonic measures ofΩ<#comment/>+\Omega ^+andΩ<#comment/>−<#comment/>\Omega ^-with polesp±<#comment/>∈<#comment/>Ω<#comment/>±<#comment/>p^\pm \in \Omega ^\pm. In this paper we show that the condition thatlog⁡<#comment/>dω<#comment/>−<#comment/>dω<#comment/>+∈<#comment/>VMO⁡<#comment/>(ω<#comment/>+)\log \dfrac {d\omega ^-}{d\omega ^+} \in \operatorname {VMO}(\omega ^+)is equivalent toΩ<#comment/>+\Omega ^+being a chord-arc domain with inner unit normal belonging toVMO⁡<#comment/>(Hn|∂<#comment/>Ω<#comment/>+)\operatorname {VMO}(\mathcal {H}^n|_{\partial \Omega ^+}).

     
    more » « less
  4. We prove a number of results on the survival of the type-I property under extensions of locally compact groups: (a) that given a closed normal embeddingN⊴<#comment/>E\mathbb {N}\trianglelefteq \mathbb {E}of locally compact groups and a twisted action(α<#comment/>,τ<#comment/>)(\alpha ,\tau )thereof on a (post)liminalC∗<#comment/>C^*-algebraAAthe twisted crossed productA⋊<#comment/>α<#comment/>,τ<#comment/>EA\rtimes _{\alpha ,\tau }\mathbb {E}is again (post)liminal and (b) a number of converses to the effect that under various conditions a normal, closed, cocompact subgroupN⊴<#comment/>E\mathbb {N}\trianglelefteq \mathbb {E}is type-I as soon asE\mathbb {E}is. This happens for instance ifN\mathbb {N}is discrete andE\mathbb {E}is Lie, or ifN\mathbb {N}is finitely-generated discrete (with no further restrictions except cocompactness). Examples show that there is not much scope for dropping these conditions.

    In the same spirit, call a locally compact groupG\mathbb {G}type-I-preserving if all semidirect productsN⋊<#comment/>G\mathbb {N}\rtimes \mathbb {G}are type-I as soon asN\mathbb {N}is, andlinearlytype-I-preserving if the same conclusion holds for semidirect productsV⋊<#comment/>GV\rtimes \mathbb {G}arising from finite-dimensionalG\mathbb {G}-representations. We characterize the (linearly) type-I-preserving groups that are (1) discrete-by-compact-Lie, (2) nilpotent, or (3) solvable Lie.

     
    more » « less
  5. We show that for primesN,p≥<#comment/>5N, p \geq 5withN≡<#comment/>−<#comment/>1modpN \equiv -1 \bmod p, the class number ofQ(N1/p)\mathbb {Q}(N^{1/p})is divisible bypp. Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that whenN≡<#comment/>−<#comment/>1modpN \equiv -1 \bmod p, there is always a cusp form of weight22and levelΓ<#comment/>0(N2)\Gamma _0(N^2)whoseℓ<#comment/>\ellth Fourier coefficient is congruent toℓ<#comment/>+1\ell + 1modulo a prime abovepp, for all primesℓ<#comment/>\ell. We use the Galois representation of such a cusp form to explicitly construct an unramified degree-ppextension ofQ(N1/p)\mathbb {Q}(N^{1/p}).

     
    more » « less