In this paper we derive the best constant for the following
This content will become publicly available on October 9, 2025
We construct a nonlinear least-squares finite element method for computing the smooth convex solutions of the Dirichlet boundary value problem of the Monge-Ampère equation on strictly convex smooth domains in
- PAR ID:
- 10548093
- Publisher / Repository:
- American Mathematical Society (AMS)
- Date Published:
- Journal Name:
- Communications of the American Mathematical Society
- Volume:
- 4
- Issue:
- 14
- ISSN:
- 2692-3688
- Format(s):
- Medium: X Size: p. 607-640
- Size(s):
- p. 607-640
- Sponsoring Org:
- National Science Foundation
More Like this
-
-type Gagliardo-Nirenberg interpolation inequality where parameters and satisfy the conditions , . The best constant is given by where is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when for any real numbers , and . In fact, the generalized Lane-Emden equation in contains a delta function as a source and it is a Thomas-Fermi type equation. For or , have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that and as for , where and are the function achieving equality and the best constant of -type Gagliardo-Nirenberg interpolation inequality, respectively. -
For each odd integer
, we construct a rank-3 graph with involution whose real -algebra is stably isomorphic to the exotic Cuntz algebra . This construction is optimal, as we prove that a rank-2 graph with involution can never satisfy , and Boersema reached the same conclusion for rank-1 graphs (directed graphs) in [Münster J. Math. 10 (2017), pp. 485–521, Corollary 4.3]. Our construction relies on a rank-1 graph with involutionwhose real -algebra is stably isomorphic to the suspension . In the Appendix, we show that the -fold suspension is stably isomorphic to a graph algebra iff . -
Let
be a bounded -Reifenberg flat domain, with small enough, possibly with locally infinite surface measure. Assume also that is an NTA (non-tangentially accessible) domain as well and denote by and the respective harmonic measures of and with poles . In this paper we show that the condition that is equivalent to being a chord-arc domain with inner unit normal belonging to . -
We prove a number of results on the survival of the type-I property under extensions of locally compact groups: (a) that given a closed normal embedding
of locally compact groups and a twisted action thereof on a (post)liminal -algebra the twisted crossed product is again (post)liminal and (b) a number of converses to the effect that under various conditions a normal, closed, cocompact subgroup is type-I as soon as is. This happens for instance if is discrete and is Lie, or if is finitely-generated discrete (with no further restrictions except cocompactness). Examples show that there is not much scope for dropping these conditions. In the same spirit, call a locally compact group
type-I-preserving if all semidirect products are type-I as soon as is, and linearly type-I-preserving if the same conclusion holds for semidirect productsarising from finite-dimensional -representations. We characterize the (linearly) type-I-preserving groups that are (1) discrete-by-compact-Lie, (2) nilpotent, or (3) solvable Lie. -
We show that for primes
with , the class number of is divisible by . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when , there is always a cusp form of weight and level whose th Fourier coefficient is congruent to modulo a prime above , for all primes . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- extension of .