skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Variability in the white spot: a new genus and species of Discodorididae (Nudibranchia) from the central and western Pacific Ocean
ABSTRACT In this paper, a new genus in the nudibranch family Discodorididae, Avaldesia n. gen., is established for Avaldesia albomacula (Chan & Gosliner, 2007) and Avaldesia tahala (Chan & Gosliner, 2007), originally assigned to the genus Thordisa Bergh, 1877, and a new species, Avaldesia tamatoa n. sp., described here from the central Pacific. To establish species relationships within Avaldesia, as well as the placement of Avaldesia within Discodorididae, we utilized four molecular markers (cytochrome c oxidase subunit I, 16S rRNA, histone H3 and 28S rRNA) in our Bayesian inference and maximum likelihood analyses. Four species delimitation methods were complemented by morphological dissections and scanning electron microscopy. Our results reveal a clear separation between Avaldesia and Thordisa and suggest that Avaldesia is more closely related to the genera Hoplodoris Bergh, 1880 and Asteronotus Ehrenberg, 1831. The most characteristic features of Avaldesia include a radula with increasing denticulation towards the fimbriate outermost laterals and a reproductive system with a lobate vestibular gland, occasional hollow vestibular spine and a penis armed with one or more penial spines. All species of Avaldesia are found in shallow water (5–10 m depth) on rocky reefs, sandy sediments and algal fields with distributions across the Indo-Pacific.  more » « less
Award ID(s):
1856407
PAR ID:
10548177
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford Academic Press
Date Published:
Journal Name:
Journal of Molluscan Studies
Volume:
90
Issue:
1
ISSN:
0260-1230
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. KiekiePolotow & Brescovit, 2018 is a Neotropical genus of Ctenidae, with most of its species occuring in Central America. In this study, we review the systematics ofKiekieand describe five new species and the unknown females ofK. barrocoloradoPolotow & Brescovit, 2018 andK. garifunaPolotow & Brescovit, 2018, and the unknown male ofK. verbenaPolotow & Brescovit, 2018. In addition, we described the female ofK. montanensewhich was wrongly assigned asK. griswoldiPolotow & Brescovit, 2018 (both species are sympatric). We provided a modified diagnosis for previously described species based on the morphology of the newly discovered species andin situphotographs of living specimens. We inferred a molecular phylogeny using four nuclear (histone H3, 28S rRNA, 18S rRNA and ITS-2) and three mitochondrial genes (cytochrome c oxidase subunit I or COI, 12S rRNA and 16S rRNA) to test the monophyly of the genus and the evolutionary relationships of its species. Lastly, we reconstruct the historical biogeography and map diversity and endemism distributional patterns of the different species. This study increased the number of known species ofKiekiefrom 13 to 18, and we describe a new genus,Eldivowhich is sister lineage ofKiekie. Most of the diversity and endemism of the genusKiekieis located in the montane ecosystems of Costa Rica followed by the lowland rainforest of the Pacific side (Limon Basin).Kiekieoriginated in the North America Tropical region, this genus started diversifying in the Late Miocene and spread to Lower Central America and South America. In that region,Kiekiecolonized independently several times the montane ecosystems corresponding to periods of uplifting of Talamanca and Central Cordilleras. 
    more » « less
  2. Andreas Schmidt-Rhaesa (Ed.)
    The marine ribbon worm genusTetranemertesChernyshev, 1992 currently includes three species: the type speciesT. antonina(Quatrefages, 1846) from the Mediterranean Sea,T. rubrolineata(Kirsteuer, 1965) from Madagascar, andT. hermaphroditica(Gibson, 1982) from Australia. Seven new species are described:T. bifrostsp. nov.,T. ocelatasp. nov.,T. majinbuuisp. nov., andT. pastafariensissp. nov.from the Caribbean Sea (Panamá), and three species,T. unistriatasp. nov.,T. paulayisp. nov., andT. arabicasp. nov., from the Indo-West Pacific (Japan and Oman). As a result, an amended morphological diagnosis of the genus is offered. To improve nomenclatural stability, a neotype ofTetranemertes antoninais designated from the Mediterranean. The newly described species, each characterized by features of external appearance and stylet apparatus, as well as by DNA-barcodes, form a well-supported clade withT. antoninaon a molecular phylogeny of monostiliferan hoplonemerteans based on partial sequences of COI, 16S rRNA, 18S rRNA, and 28S rRNA. Six of the seven newly described species, as well asT. rubrolineata, possess the unusual character of having a central stylet basis slightly bilobed to deeply forked posteriorly in fully grown individuals, a possible morphological synapomorphy of the genus. In addition, an undescribed species ofTetranemertesis reported from the Eastern Tropical Pacific (Panamá), increasing the total number of known species in the genus to eleven. 
    more » « less
  3. ABSTRACT AimThuridillaBergh, 1872, is a lineage of herbivorous sea slugs externally distinguished by bright colours and distinctive patterns of lines and spots. Recent work revealed an exceptionally rapid, cryptic radiation of 13 species in the Indo‐Pacific, raising questions about mechanisms of speciation in this group. Here, we (i) study the diversification and historical biogeography ofThuridillain a phylogenetic context and (ii) assess the role of dispersal and vicariance as the predominant mode of speciation in the genus. LocationTropical and temperate regions of the Atlantic and Indo‐Pacific. Major Taxa StudiesGastropoda, Sacoglossa. MethodsA nearly complete taxon set with 28 out of 32 recognised species ofThuridillawas used, in a total sample of 172 specimens, together with sacoglossan outgroups. Phylogenetic relationships were determined using a multi‐locus approach combining two mitochondrial (COI and 16S) and one nuclear gene (H3). Species relationships, diversification times, and ancestral geographical ranges were inferred using relaxed‐clock methods together with Bayesian discrete phylogeographic methods under three calibration scenarios using the oldest known fossil of Sacoglossa,Berthelinia elegansCrosse, 1875, and tectonic events. ResultsThuridillaspecies branched off into four major clades in all calibration scenarios: two groups from the Atlantic plus Indo‐West Pacific (5 and 6 species) and two clades from the Indo‐West Pacific (4 and 17 species). The highest diversity of the genus is in the Western Pacific (14 spp.) with a peak in the East Indies Triangle (18 spp.), whereas the Atlantic is depauperate with only four species occurring in this ocean basin. Divergence between Atlantic and Indo‐West Pacific lineages occurred in two main temporal periods: the Miocene and the Pliocene. Speciation events within the 13 cryptic species‐complex fell mostly within Plio‐Pleistocene times. Main ConclusionsThe best supported hypothesis was an Indo‐West Pacific origin ofThuridillabetween 28 and 18 Mya during the Early Miocene. In the western Pacific, speciation likely occurred during transient allopatry during Plio‐Pleistocene sea‐level fluctuations. Under the three tested calibration scenarios, the limited diversity of the Atlantic Ocean is hypothesized to be derived from Miocene vicariant events associated with the closure of the Tethys Sea, dispersal across southern Africa, or long‐distance dispersal across the East Pacific Barrier prior to the uplift of the Isthmus of Panama.Thuridillais absent in the Eastern Pacific, potentially resulting from the extinction of ancestral lineages following the uplift of the Isthmus of Panama. Near‐complete sampling of diversity and reconstruction of historical biogeography thus yielded new insight into the relative contributions of dispersal versus vicariance during speciation over the history of this widely distributed, colourful genus. 
    more » « less
  4. ABSTRACT AimThe aim of the current study is to conduct a comprehensive phylogenetic analysis of the genusArbaciato elucidate the evolution and phylogenetic relationships among all extant species and reevaluate the presence of geographic structure within species that have wide, fragmented distributions. LocationSpecimens ofArbaciawere collected from 34 localities spanning the Atlantic and Pacific Oceans, and the Mediterranean Sea. MethodsWe obtained sequences from three mitochondrial markers (COI, 16S and the control region and adjacent tRNAs) and two nuclear markers (28S and 18S; the latter ultimately excluded from the final analyses). Phylogenetic trees were constructed using maximum likelihood and Bayesian inference approaches. A time‐calibrated phylogenetic tree was inferred using a relaxed Bayesian molecular clock and three fossil calibration points. ResultsOur analysis supports the monophyly of the genusArbacia, including the speciesArbacia nigra(previously assigned to the monotypic genusTetrapygus). The new phylogenetic topology suggests an alternative biogeographic scenario of initial divergence between Atlantic and Pacific subclades occurring approximately 9 million years ago. The dispersal and subsequent diversification of the Pacific subclade to the southeast Pacific coincides with the onset of glacial and interglacial cycles in Patagonia. In the Atlantic subclade, the split betweenA. punctulataandA. lixulaoccurred 3.01–6.30 (median 3.74 million years ago), possibly associated with the strengthening of the Gulf Stream current connecting the western and eastern Atlantic. Our study also reveals significant genetic and phylogeographic structures within both Atlantic species, indicating ongoing differentiation processes between populations. Main ConclusionOur study provides valuable insights into the evolutionary history and biogeography of the genusArbaciaand highlights the complex interplay between historical climate changes and oceanic currents in shaping the distribution and diversification of echinoids in the Atlantic and Pacific Oceans. 
    more » « less
  5. Abstract Although the 16S (and 18S) rRNA gene has been an essential tool in classifying prokaryotes, using a single locus to revise bacteria taxonomy can introduce unwanted artifacts. There was a recent proposition to split the Methylobacterium genus, which contains diverse plant-associated strains and is important for agriculture and biotechnology, into two genera. Resting strongly on the phylogeny of 16S rRNA, 11 species of Methylobacterium were transferred to a newly proposed genus Methylorubrum. Numerous recent studies have independently questioned Methylorubrum as a valid genus, but the prior revision has left discrepancies among taxonomic databases. Here, we review phylogenomic and phenotypic evidence against Methylorubrum as a genus and call for its abandonment. Because Methylobacterium sensu lato forms a consistent and monophyletic genus, we argue for the restoration of the former and consensual Methylobacterium taxonomy. The large genomic, phenotypic, and ecological diversity within Methylobacterium however suggests complex evolutionary and adaptive processes and support the description of the most basal clade of Methylobacterium (group C) as a distinct genus in future work. Overall, this perspective demonstrates the danger of solely relying upon the 16S rRNA gene as a delimiter of genus level taxonomy and that further attempts must include more robust phenotypic and phylogenomic criteria. 
    more » « less