skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genetic transformation of the frog-killing chytrid fungus Batrachochytrium dendrobatidis
Batrachochytrium dendrobatidis(Bd), a causative agent of chytridiomycosis, is decimating amphibian populations around the world.Bdbelongs to the chytrid lineage, a group of early-diverging fungi that are widely used to study fungal evolution. Like all chytrids,Bddevelops from a motile form into a sessile, growth form, a transition that involves drastic changes in its cytoskeletal architecture. Efforts to studyBdcell biology, development, and pathogenicity have been limited by the lack of genetic tools with which to test hypotheses about underlying molecular mechanisms. Here, we report the development of a transient genetic transformation system forBd. We used electroporation to deliver exogenous DNA intoBdcells and detected transgene expression for up to three generations under both heterologous and native promoters. We also adapted the transformation protocol for selection using an antibiotic resistance marker. Finally, we used this system to express fluorescent protein fusions and, as a proof of concept, expressed a genetically encoded probe for the actin cytoskeleton. Using live-cell imaging, we visualized the distribution and dynamics of polymerized actin at each stage of theBdlife cycle, as well as during key developmental transitions. This transformation system enables direct testing of key hypotheses regarding mechanisms ofBdpathogenesis. This technology also paves the way for answering fundamental questions of chytrid cell, developmental, and evolutionary biology.  more » « less
Award ID(s):
1827257
PAR ID:
10548178
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
4
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chytrids are early-diverging fungi that share features with animals that have been lost in most other fungi. They hold promise as a system to study fungal and animal evolution, but we lack genetic tools for hypothesis testing. Here, we generated transgenic lines of the chytrid Spizellomyces punctatus, and used fluorescence microscopy to explore chytrid cell biology and development during its life cycle. We show that the chytrid undergoes multiple rounds of synchronous nuclear division, followed by cellularization, to create and release many daughter ‘zoospores’. The zoospores, akin to animal cells, crawl using actin-mediated cell migration. After forming a cell wall, polymerized actin reorganizes into fungal-like cortical patches and cables that extend into hyphal-like structures. Actin perinuclear shells form each cell cycle and polygonal territories emerge during cellularization. This work makes Spizellomyces a genetically tractable model for comparative cell biology and understanding the evolution of fungi and early eukaryotes. 
    more » « less
  2. Abstract The chytrid fungusBatrachochytrium dendrobatidis(Bd) is a causative agent of chytridiomycosis, a skin disease associated with amphibian population declines around the world. Despite the major impactBdis having on global ecosystems, much ofBd’s basic biology remains unstudied. In addition to revealing mechanisms driving the spread of chytridiomycosis, studyingBdcan shed light on the evolution of key fungal traits because chytrid fungi, includingBd, diverged before the radiation of the Dikaryotic fungi (multicellular fungi and yeast). StudyingBdin the laboratory is, therefore, of growing interest to a wide range of scientists, ranging from herpetologists and disease ecologists to molecular, cell, and evolutionary biologists. This protocol describes how to maintain developmentally synchronized liquid cultures ofBdfor use in the laboratory, how to growBdon solid media, as well as cryopreservation and revival of frozen stocks. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Reviving cryopreservedBdcultures Basic Protocol 2: Establishing synchronized liquid cultures ofBd Basic Protocol 3: Regular maintenance of synchronousBdin liquid culture Alternate Protocol 1: Regular maintenance of asynchronousBdin liquid culture Basic Protocol 4: Regular maintenance of synchronousBdon solid medium Alternate Protocol 2: Starting a culture on solid medium from a liquid culture Basic Protocol 5: Cryopreservation ofBd 
    more » « less
  3. Chytrid fungi play key ecological roles in aquatic ecosystems, and some species cause a devastating skin disease in frogs and salamanders. Additionally, chytrids occupy a unique phylogenetic position– sister to the well-studied Dikarya (the group including yeasts, sac fungi, and mushrooms) and related to animals– making chytrids useful for answering important evolutionary questions. Despite their importance, little is known about the basic cell biology of chytrids. A major barrier to understanding chytrid biology has been a lack of genetic tools with which to test molecular hypotheses. Medina and colleagues recently developed a protocol for Agrobacterium -mediated transformation of Spizellomyces punctatus . In this manuscript, we describe the general procedure including planning steps and expected results. We also provide in-depth, step-by-step protocols and video guides for performing the entirety of this transformation procedure on protocols.io (dx.doi.org/10.17504/protocols.io.x54v9dd1pg3e/v1). 
    more » « less
  4. Abstract BackgroundAstyanax mexicanusis a well‐established fish model system for evolutionary and developmental biology research. These fish exist as surface forms that inhabit rivers and 30 different populations of cavefish. Despite important progress in the deployment of new technologies, deep mechanistic insights into the genetic basis of evolution, development, and behavior have been limited by a lack of transgenic lines commonly used in genetic model systems. ResultsHere, we expand the toolkit of transgenesis by characterizing two novel stable transgenic lines that were generated using the highly efficientTol2system, commonly used to generate transgenic zebrafish. A stable transgenic line consisting of the zebrafish ubiquitin promoter expresses enhanced green fluorescent protein ubiquitously throughout development in a surface population ofAstyanax. To define specific cell‐types, a Cntnap2‐mCherry construct labels lateral line mechanosensory neurons in zebrafish. Strikingly, both constructs appear to label the predicted cell types, suggesting many genetic tools and defined promoter regions in zebrafish are directly transferrable to cavefish. ConclusionThe lines provide proof‐of‐principle for the application ofTol2transgenic technology inA. mexicanus. Expansion on these initial transgenic lines will provide a platform to address broadly important problems in the quest to bridge the genotype‐phenotype gap. 
    more » « less
  5. Global amphibian declines are compounded by deadly disease outbreaks caused by the chytrid fungus,Batrachochytrium dendrobatidis(Bd). Much has been learned about the roles of amphibian skin-produced antimicrobial components and microbiomes in controllingBd, yet almost nothing is known about the roles of skin-resident immune cells in anti-Bddefenses. Mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like skin. Accordingly, we investigated the roles ofXenopus laevisfrog mast cells duringBdinfections. Our findings indicate that enrichment ofX. laevisskin mast cells confers anti-Bdprotection and ameliorates the inflammation-associated skin damage caused byBdinfection. This includes a significant reduction in infiltration ofBd-infected skin by neutrophils, promoting mucin content within cutaneous mucus glands, and preventingBd-mediated changes to skin microbiomes. Mammalian mast cells are known for their production of the pleiotropic interleukin-4 (IL4) cytokine and our findings suggest that theX. laevisIL4 plays a key role in manifesting the effects seen following cutaneous mast cell enrichment. Together, this work underscores the importance of amphibian skin-resident immune cells in anti-Bddefenses and illuminates a novel avenue for investigating amphibian host–chytrid pathogen interactions. 
    more » « less