Abstract Species interactions may couple the resource dynamics of different primary producers and may enhance productivity by reducing loss from the system. In low‐resource systems, this biotic control may be especially important for maintaining productivity. In drylands, the activities of vascular plants and biological soil crusts can be decoupled in space because biocrusts grow on the soil surface but plant roots are underground, and decoupled in time due to biocrusts activating with smaller precipitation events than plants. Soil fungi are hypothesized to functionally couple the plants and biocrusts by transporting nutrients. We studied whether disrupting fungi between biocrusts and plants reduces nitrogen transfer and retention and decreases primary production as predicted by the fungal loop hypothesis. Additionally, we compared varying precipitation regimes that can drive different timing and depth of biological activities.We used field mesocosms in which the potential for fungal connections between biocrusts and roots remained intact or were impeded by mesh. We imposed a precipitation regime of small, frequent or large, infrequent rain events. We used15N to track fungal‐mediated nitrogen (N) transfer. We quantified microbial carbon use efficiency and plant and biocrust production and N content.Fungal connections with biocrusts benefitted plant biomass and nutrient retention under favourable (large, infrequent) precipitation regimes but not under stressful (small, frequent) regimes, demonstrating context dependency in the fungal loop. Translocation of a15N tracer from biocrusts to roots was marginally lower when fungal connections were impeded than intact. Under large, infrequent rains, when fungal connections were intact, the C:N of leaves converged towards the C:N of biocrusts, suggesting higher N retention in the plant, and plant above‐ground biomass was greater relative to the fungal connections‐impeded treatment. Carbon use efficiency in both biocrust and rooting zone soil was less C‐limited when connections were intact than impeded, again only in the large, infrequent precipitation regime.Synthesis. Although we did not find evidence of a reciprocal transfer of C and N between plants and biocrusts, plant production was benefited by fungal connections with biocrusts under favourable conditions. 
                        more » 
                        « less   
                    
                            
                            Predicting plants in the wild: Mapping arctic and boreal plants with UAS-based visible and near infrared reflectance spectra
                        
                    - Award ID(s):
- 1920908
- PAR ID:
- 10548191
- Publisher / Repository:
- International Journal of Applied Earth Observation and Geoinformation
- Date Published:
- Journal Name:
- International Journal of Applied Earth Observation and Geoinformation
- Volume:
- 133
- Issue:
- C
- ISSN:
- 1569-8432
- Page Range / eLocation ID:
- 104156
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In contrast to well-studied fungal and animal cells, plant cells assemble bipolar spindles that exhibit a great deal of plasticity in the absence of structurally defined microtubule-organizing centers like the centrosome. While plants employ some evolutionarily conserved proteins to regulate spindle morphogenesis and remodeling, many essential spindle assembly factors found in vertebrates are either missing or not required for producing the plant bipolar microtubule array. Plants also produce proteins distantly related to their fungal and animal counterparts to regulate critical events such as the spindle assembly checkpoint. Plant spindle assembly initiates with microtubule nucleation on the nuclear envelope followed by bipolarization into the prophase spindle. After nuclear envelope breakdown, kinetochore fibers are assembled and unified into the spindle apparatus with convergent poles. Of note, compared to fungal and animal systems, relatively little is known about how plant cells remodel the spindle microtubule array during anaphase. Uncovering mitotic functions of novel proteins for spindle assembly in plants will illuminate both common and divergent mechanisms employed by different eukaryotic organisms to segregate genetic materials.more » « less
- 
            Abstract Plant small RNAs are important regulatory elements that fine-tune gene expression and maintain genome integrity by silencing transposons. Reproductive organs of monocots produce abundant phased, small interfering RNAs (phasiRNAs). The 21-nt reproductive phasiRNAs triggered by miR2118 are highly enriched in pre-meiotic anthers, and have been found in multiple eudicot species, in contrast with prior reports of monocot specificity. The 24-nt reproductive phasiRNAs are triggered by miR2275, and are highly enriched during meiosis in many angiosperms. Here, we report the widespread presence of the 21-nt reproductive phasiRNA pathway in eudicots including canonical and non-canonical microRNA (miRNA) triggers of this pathway. In eudicots, these 21-nt phasiRNAs are enriched in pre-meiotic stages, a spatiotemporal distribution consistent with that of monocots and suggesting a role in anther development. Although this pathway is apparently absent in well-studied eudicot families including the Brassicaceae, Solanaceae and Fabaceae, our work in eudicots supports an earlier singular finding in spruce, a gymnosperm, indicating that the pathway of 21-nt reproductive phasiRNAs emerged in seed plants and was lost in some lineages.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    