skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating key drivers of N2O emissions in heterogeneous riparian sediments: Reactive transport modeling and statistical analysis
Nitrous oxide (N2O) is a potent greenhouse gas that also contributes to ozone depletion. Recent studies have identified river corridors as significant sources of N2O emissions. Surface water-groundwater (hyporheic) interactions along river corridors induce flow and reactive nitrogen transport through riparian sediments, thereby generating N2O. Despite the prevalence of these processes, the controlling influence of physical and geochemical parameters on N2O emissions from coupled aerobic and anaerobic reactive transport processes in heterogeneous riparian sediments is not yet fully understood. This study presents an integrated framework that combines a flow and multi-component reactive transport model (RTM) with an uncertainty quantification and sensitivity analysis tool to determine which physical and geochemical parameters have the greatest impact on N2O emissions from riparian sediments. The framework involves the development of thousands of RTMs, followed by global sensitivity and responsive surface analyses. Results indicate that characterizing the denitrification reaction rate constant and permeability of intermediate-permeability sediments (e.g., sandy gravel) are crucial in describing coupled nitrification-denitrification reactions and the magnitude of N2O emissions. This study provides valuable insights into the factors that influence N2O emissions from riparian sediments and can help in developing strategies to control N2O emissions from river corridors  more » « less
Award ID(s):
2048452
PAR ID:
10548347
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Science of The Total Environment
Volume:
905
Issue:
C
ISSN:
0048-9697
Page Range / eLocation ID:
166930
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Per- and polyfluoroalkyl substances (PFAS) are surface-active contaminants, which are detected in groundwater globally, presenting serious health concerns. The vadose zone and surface water are recognized as primary sources of PFAS contamination. Previous studies have explored PFAS transport and retention mechanisms in the vadose zone, revealing that adsorption at interfaces and soil/sediment heterogeneity significantly influences PFAS retention. However, our understanding of how surface water−groundwater interactions along river corridors impact PFAS transport remains limited. To analyze PFAS transport during surface water−groundwater interactions, we performed saturated−unsaturated flow and reactive transport simulations in heterogeneous riparian sediments. Incorporating uncertainty quantification and sensitivity analysis, we identified key physical and geochemical sediment properties influencing PFAS transport. Our models considered aqueous-phase transport and adsorption both at the air−water interface (AWI) and the solid-phase surface. We tested different cases of heterogeneous sediments with varying volume proportions of higher permeability sediments, conducting 2000 simulations for each case, followed by global sensitivity and response surface analyses. Results indicate that sediment porosities, which are correlated to permeabilities, are crucial for PFAS transport in riparian sediments during river stage fluctuations. High-permeable sediment (e.g., sandy gravel, sand) is the preferential path for the PFAS transport, and low-permeable sediment (e.g., silt, clay) is where PFAS is retained. Additionally, the results show that adsorption at interfaces (AWI and solid phase) has a small impact on PFAS retention in riparian environments. This study offers insights into factors influencing PFAS transport in riparian sediments, potentially aiding the development of strategies to reduce the risk of PFAS contamination in groundwater from surface water. 
    more » « less
  2. Abstract In coastal rivers, tides facilitate surface water‐groundwater exchange and strongly coupled nitrification‐denitrification near the fluctuating water table. We used numerical fluid flow and reactive transport models to explore hydrogeologic and biogeochemical controls on nitrogen transport along an idealized tidal freshwater zone based on field observations from White Clay Creek, Delaware, USA. The capacity of the riparian aquifer to remove nitrate depends largely on nitrate transport rates, which initially increase with increasing tidal range but then decline as sediments become muddier and permeability decreases. Over the entire model reach, local nitrification provides a similar amount of nitrate as surface and groundwater contributions combined. More than half (~66%) of nitrate removed via denitrification is produced in situ, while the vast majority of remaining nitrate removed comes from groundwater sources. In contrast, average nitrate removal from surface water due to tidal pumping amounts to only ~1% of the average daily in‐channel riverine nitrate load or 1.77 kg of nitrate along the reach each day. As a result, tidal bank storage zones may not be major sinks for nitrate in coastal rivers but can act as effective sinks for groundwater nitrate. By extension, tidal bank storage zones provide a critical ecosystem service, reducing contributions of groundwater nitrate, which is often derived from septic tanks and fertilizers, to coastal rivers. 
    more » « less
  3. Microbial-driven processes, including nitrification and denitrification closely related to soil nitrous oxide (N2O) production, are orchestrated by a network of enzymes and genes such as amoA genes from ammonia-oxidizing bacteria (AOB) and archaea (AOA), narG (nitrate reductase), nirS and nirK (nitrite reductase), and nosZ (N2O reductase). However, how climatic factors and agricultural practices could influence these genes and processes and, consequently, soil N2O emissions remain unclear. In this comprehensive review, we quantitatively assessed the effects of these factors on nitrogen processes and soil N2O emissions using mega-analysis (i.e., meta-meta-analysis). The results showed that global warming increased soil nitrification and denitrification rates, leading to an overall increase in soil N2O emissions by 159.7%. Elevated CO2 stimulated both nirK and nirS with a substantial increase in soil N2O emission by 40.6%. Nitrogen fertilization amplified NH4+-N and NO3−-N contents, promoting AOB, nirS, and nirK, and caused a 153.2% increase in soil N2O emission. The application of biochar enhanced AOA, nirS, and nosZ, ultimately reducing soil N2O emission by 15.8%. Exposure to microplastics mostly stimulated the denitrification process and increased soil N2O emissions by 140.4%. These findings provide valuable insights into the mechanistic underpinnings of nitrogen processes and the microbial regulation of soil N2O emissions. 
    more » « less
  4. Abstract Riparian zones are key ecotones that buffer aquatic ecosystems through removal of nitrogen (N) via processes such as denitrification. However, how dams alter riparian N cycling and buffering capacity is poorly understood. Here, we hypothesized that elevated groundwater and anoxia due to the backup of stream water above milldams may enhance denitrification. We assessed denitrification rates (using denitrification enzyme assays) and potential controlling factors in riparian sediments at various depths upstream and downstream of two relict U.S. mid‐Atlantic milldams. Denitrification was not significantly different between upstream and downstream, although was greater per river km upstream considering deeper and wider geometries. Further, denitrification typically occurred in hydrologically variable shallow sediments where nitrate‐N and organic matter were most concentrated. At depths below 1 m, both denitrification and nitrate‐N decreased while ammonium‐N concentrations substantially increased, indicating suppression of ammonium consumption or dissimilatory nitrate reduction to ammonium. These results suggest that denitrification occurs where dynamic groundwater levels result in higher rates of nitrification and mineralization, while another N process that produces ammonium‐N competes with denitrification for limited nitrate‐N at deeper, more stagnant/poorly mixed depths. Ultimately, while it is unclear whether relict milldams are sources of N, limited denitrification rates indicate that they are not always effective sinks; thus, milldam removal—especially accompanied by removal of ammonium‐N rich legacy sediments—may improve riparian N buffering. 
    more » « less
  5. Indirect nitrous oxide (N2O) emissions from streams and rivers are a poorly constrained term in the global N2O budget. Current models of riverine N2O emissions place a strong focus on denitrification in groundwater and riverine environments as a dominant source of riverine N2O, but do not explicitly consider direct N2O input from terrestrial ecosystems. Here, we combine N2O isotope measurements and spatial stream network modeling to show that terrestrial-aquatic interactions, driven by changing hydrologic connectivity, control the sources and dynamics of riverine N2O in a mesoscale river network within the U.S. Corn Belt. We find that N2O produced from nitrification constituted a substantial fraction (i.e., > 30%) of riverine N2O across the entire river network. The delivery of soil-produced N2O to streams was identified as a key mechanism for the high nitrification contribution and potentially accounted for more than 40% of the total riverine emission. This revealed large terrestrial N2O input implies an important climate-N2O feedback mechanism that may enhance riverine N2O emissions under a wetter and warmer climate. Inadequate representation of hydrologic connectivity in observations and modeling of riverine N2O emissions may result in significant underestimations. 
    more » « less