With the rise of machine learning and data analytics, the ability to process large and diverse sets of data efficiently has become crucial. Research has shown that data transformation is a key performance bottleneck for applications across a variety of domains, from data analytics to scientific computing. Custom hardware accelerators and GPU implementations targeting specific data transformation tasks can alleviate the problem, but suffer from narrow applicability and lack of generality.To tackle this problem, we propose a GPU-accelerated data transformation engine grounded on pushdown transducers. We define an extended pushdown transducer abstraction (effPDT) that allows expressing a wide range of data transformations in a memory-efficient fashion, and is thus amenable for GPU deployment. The effPDT execution engine utilizes a data streaming model that reduces the application’s memory requirements significantly, facilitating deployment on high- and low-end systems. We showcase our GPU-accelerated engine on a diverse set of transformation tasks covering data encoding/decoding, parsing and querying of structured data, and matrix transformation, and we evaluate it against publicly available CPU and GPU library implementations of the considered data transformation tasks. To understand the benefits of the effPDT abstraction, we extend our data transformation engine to also support finite state transducers (FSTs), we map the considered data transformation tasks on FSTs, and we compare the performance and resource requirements of the FST-based and the effPDT-based implementations.
more »
« less
This content will become publicly available on October 13, 2025
A Transducers-based Programming Framework for Efficient Data Transformation
Many data analytics and scientific applications rely on data transformation tasks, such as encoding, decoding, parsing of structured and unstructured data, and conversions between data formats and layouts. Previous work has shown that data transformation can represent a performance bottleneck for data analytics workloads. The transducers computational abstraction can be used to express a wide range of data transformations, and recent efforts have proposed configurable engines implementing various transducer models (from finite state transducers, to pushdown transducers, to extended models). This line of research, however, is still at an early stage. Notably, expressing data transformation using transducers requires a paradigm shift, impacting programmability. To address this problem, we propose a programming framework to map data transformation tasks onto a variety of transducer models. Our framework includes: (1) a platform agnostic programming language (xPTLang) to code transducer programs using intuitive programming constructs, and (2) a compiler that, given an xPTLang program, generates efficient transducer processing engines for CPU and GPU. Our compiler includes a set of optimizations to improve code efficiency. We demonstrate our framework on a diverse set of data transformation tasks on an Intel CPU and an Nvidia GPU.
more »
« less
- Award ID(s):
- 1907863
- PAR ID:
- 10548597
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400706318
- Page Range / eLocation ID:
- 66 to 77
- Format(s):
- Medium: X
- Location:
- Long Beach CA USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Over the past few years, there has been an increased interest in including FPGAs in data centers and high-performance computing clusters along with GPUs and other accelerators. As a result, it has become increasingly important to have a unified, high-level programming interface for CPUs, GPUs and FPGAs. This has led to the development of compiler toolchains to deploy OpenCL code on FPGA. However, the fundamental architectural differences between GPUs and FPGAs have led to performance portability issues: it has been shown that OpenCL code optimized for GPU does not necessarily map well to FPGA, often requiring manual optimizations to improve performance. In this paper, we explore the use of thread coarsening - a compiler technique that consolidates the work of multiple threads into a single thread - on OpenCL code running on FPGA. While this optimization has been explored on CPU and GPU, the architectural features of FPGAs and the nature of the parallelism they offer lead to different performance considerations, making an analysis of thread coarsening on FPGA worthwhile. Our evaluation, performed on our microbenchmarks and on a set of applications from open-source benchmark suites, shows that thread coarsening can yield performance benefits (up to 3-4x speedups) to OpenCL code running on FPGA at a limited resource utilization cost.more » « less
-
Data transformation tasks are a critical and costly part of many data processing and analytics applications. A simple computing model that can efficiently represent data transformation and be mapped to different platforms can provide programmers with the flexibility o f u sing different data representations and allow for exploiting different platforms, including general-purpose processors and accelerators.We propose extended Deterministic Finite State Transducers (DFST+s), a computing model that enables the compact expression of data transformations (a significantly terser expression compared to the DFSTs model, a traditional computational abstraction for data transformation), aiding their correct and efficient implementation. We define the TF ORM language to facilitate expressing the DFST+, and the TFORM virtual machine to enable a further compact expression, leading to a high performance and portable implementation. We propose two TFORM VM execution models and evaluate them using a variety of data transformations (from Apache Parquet file format and sparse matrices). Our results show both effective portability across CPU and a hardware accelerator, and performance increases of 1.7× and 11.7× geometric mean, respectively, over a custom CPU implementation of the same transformations.more » « less
-
There has been a growing interest in using GPU to accelerate data analytics due to its massive parallelism and high memory bandwidth. The main constraint of using GPU for data analytics is the limited capacity of GPU memory. Heterogeneous CPU-GPU query execution is a compelling approach to mitigate the limited GPU memory capacity and PCIe bandwidth. However, the design space of heterogeneous CPU-GPU query execution has not been fully explored. We aim to improve state-of-the-art CPU-GPU data analytics engine by optimizing data placement and heterogeneous query execution. First, we introduce a semantic-aware fine-grained caching policy which takes into account various aspects of the workload such as query semantics, data correlation, and query frequency when determining data placement between CPU and GPU. Second, we introduce a heterogeneous query executor which can fully exploit data in both CPU and GPU and coordinate query execution at a fine granularity. We integrate both solutions in Mordred, our novel hybrid CPU-GPU data analytics engine. Evaluation on the Star Schema Benchmark shows that the semantic-aware caching policy can outperform the best traditional caching policy by up to 3x. Compared to existing GPU DBMSs, Mordred can outperform by an order of magnitude.more » « less
-
Cathie Olschanowsky (Ed.)The Sparse Polyhedral Framework (SPF) provides vital support to scientific applications, but is limited in portability. SPF extends the Polyhedral Model to non-affine codes. Scientific applications need the optimizations SPF enables, but current SPF tools don’t support GPUs or other heterogeneous hardware targets. As clock speeds continue to stagnate, scientific applications need the performance enhancements enabled by both SPF and newer heterogeneous hardware. The MLIR (Multi-Level Intermediate Representation) ecosystem offers a large, extensible, and cooperating set of intermediate representations (called dialects). A typical compiler has one main intermediate representation, whereas an MLIR based compiler will have many. Because of this flexibility, the MLIR ecosystem has many dialects designed with heterogeneous hardware platforms in mind. This work creates an MLIR SPF dialect. The dialect enables SPF optimizations and is capable of generating GPU code as well as CPU code from SPF representations. Previous C based SPF front ends are not capable of generating GPU code. The SPF dialect representations of common sparse scientific kernels generate CPU code competitive with the existing C based front end, and GPU code competitive with standard benchmarks.more » « less