skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pyrene‐Based Polyimide Covalent Organic Framework with Temperature‐Dependent Fluorescence
Abstract The synthesis of a fluorescent covalent organic framework (COF) using perylene and pyrene building blocks (PEPy‐COF), via a one‐pot condensation reaction is reported. PEPy‐COF is crystallized into 2D nanosheets with a cubic and prismatic crystalline morphology and demonstrates structural stability at temperatures up to 500 °C. The structural morphology is confirmed using X‐ray diffraction and atomic‐level simulations. These 2D porous polymer sheets form a tetragonal framework that is found to have a high specific surface area of 772 m2g−1. Based on the definition of porous materials, the network is mesoporous with an observed pore size of 3.03 nm, which is in good agreement with the material's calculated pore size. The experimentally obtained HOMO‐LUMO band gap is 2.62 eV, confirming the semiconducting nature of PEPy‐COF. PEPy‐COF emits a shiny blue luminescence under UV and visible light. This luminescence intensity is temperature‐dependent in solvents with different polarities and dielectric constants demonstrating that the PEPy‐COF has potential use in a wide range of temperature‐sensing devices. The fluorescence intensity ratio is similar for different temperatures under ultra‐sound conditions and varying solvents.  more » « less
Award ID(s):
1719875
PAR ID:
10548625
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley Online Library
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
11
Issue:
14
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The recovery and separation of organic solvents is highly important for the chemical industry and environmental protection. In this context, porous organic polymers (POPs) have significant potential owing to the possibility of integrating shape‐persistent macrocyclic units with high guest selectivity. Here, we report the synthesis of a macrocyclic porous organic polymer (np‐POP) and the corresponding model compound by reacting the cyclotetrabenzil naphthalene octaketone macrocycle with 1,2,4,5‐tetraaminobenzene and 1,2‐diaminobenzene, respectively, under solvothermal conditions. Co‐crystallization of the macrocycle and the model compound with various solvent molecules revealed their size‐selective inclusion within the macrocycle. Building on this finding, thenp‐POP with a hierarchical pore structure and a surface area of 579 m2 g−1showed solvent uptake strongly correlated with their kinetic diameters. Solvents with kinetic diameters below 0.6 nm – such as acetonitrile and dichloromethane – showed high uptake capacities exceeding 7 mmol g−1. Xylene separation tests revealed a high overall uptake (~34 wt %), witho‐xylene displaying a significantly lower uptake (~10 wt % less than other isomers), demonstrating the possibility of size and shape selective separation of organic solvents. 
    more » « less
  2. Microporous two-dimensional covalent organic framework (2D COF) membranes offer promise for gas separation applications, but their gas transport mechanism remains unclear. In this study, a TpHz 2D COF membrane supported on a macroporous nylon substrate is prepared by substrate-assisted interfacial polymerization under mild conditions. The formation of a continuous and dense thin (∼300 nm thick) TpHz layer is confirmed by scanning electron microscopy and Fourier transform infrared spectroscopy. Characterization by X-ray diffraction, grazing incidence wide-angle X-ray scattering, and N2 porosimetry qualitatively reveals the microstructures of the supported TpHz membranes, i.e., they comprise partially oriented 2D COF lamellar crystallites with moderate crystallinity in an eclipsed (AA) stacking geometry, centering the effective membrane pore size distribution at ∼1.1 nm. Single gas permeation data show that the transport of common molecular gases, including H2, He, CH4, N2, and CO2, through the synthesized TpHz membranes follows the Knudsen transport mechanism, where single gas permeance decreases with an increasing molecular weight and permeation temperature. Binary gas separation results show that in the equimolar CO2/N2 mixture, the presence of the CO2 surface flow slightly hinders the N2 flow at room temperature due to the reduced membrane channel size by the adsorbed CO2 gas layer on TpHz’s pore wall. In contrast, permeation of the equimolar CH4/N2 binary mixture does not exhibit a discernible surface flow of both gases due to their much lower gas uptake on TpHz, and their transport mechanism follows Knudsen-like behavior. 
    more » « less
  3. Abstract The escalating presence of per‐ and polyfluoroalkyl substances (PFAS) in drinking water poses urgent public health concerns, necessitating effective removal. This study presents a groundbreaking approach, using viologen to synthesize covalent organic framework nanospheres: MELEM‐COF and MEL‐COF. Characterized by highly crystalline features, these nanospheres exhibit exceptional affinity for diverse anionic PFAS compounds, achieving simultaneous removal of multiple contaminants within 30 min. Investigating six anionic PFAS compounds, MEL‐ and MELEM‐COFs achieved 90.0–99.0% removal efficiency. The integrated analysis unveils the synergistic contributions of COF morphology and functional properties to PFAS adsorption. Notably, MELEM‐COF, with cationic surfaces, exploits electrostatic and dipole interactions, with a 2500 mg g−1adsorption capacity—surpassing all reported COFs to date. MELEM‐COF exhibits rapid exchange kinetics, reaching equilibrium within 30 min. These findings deepen the understanding of COF materials and promise avenues for refining COF‐based adsorption strategies. 
    more » « less
  4. A bridge-type photonic crystal (PhC) nanocavity based on Er,O-codoped GaAs is employed to realize enhancement of Er luminescence. By adjusting the structural design and measurement temperature, the cavity mode's wavelength can be coupled to Er luminescence. The peak emission intensity from an Er-2O defect center was enhanced 7.3 times at 40 nW pump power and 77 K. The experimental Q-factor is estimated to be over 1.2 × 104, and the luminescence intensity shows superlinearity with excitation power, suggesting Er luminescence amplification. This result would pave the way towards the realization of highly efficient single-photon emitters based on rare-earth elements. 
    more » « less
  5. Abstract Herein, we report the synthesis of a nitrone‐linked covalent organic framework, COF‐115, by combiningN,N′,N′,N′′′‐(ethene‐1, 1, 2, 2‐tetrayltetrakis(benzene‐4, 1‐diyl))tetrakis(hydroxylamine) and terephthaladehyde via a polycondensation reaction. The formation of the nitrone functionality was confirmed by solid‐state13C multi cross‐polarization magic angle spinning NMR spectroscopy of the13C‐isotope‐labeled COF‐115 and Fourier‐transform infrared spectroscopy. The permanent porosity of COF‐115 was evaluated through low‐pressure N2, CO2, and H2sorption experiments. Water vapor and carbon dioxide sorption analysis of COF‐115 and the isoreticular imine‐linked COF indicated a superior potential ofN‐oxide‐based porous materials for atmospheric water harvesting and CO2capture applications. Density functional theory calculations provided valuable insights into the difference between the adsorption properties of these COFs. Lastly, photoinduced rearrangement of COF‐115 to the associated amide‐linked material was successfully demonstrated. 
    more » « less