skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanism of target site selection by type V-K CRISPR-associated transposases
CRISPR-associated transposases (CASTs) repurpose nuclease-deficient CRISPR effectors to catalyze RNA-guided transposition of large genetic payloads. Type V-K CASTs offer potential technology advantages but lack accuracy, and the molecular basis for this drawback has remained elusive. Here, we reveal that type V-K CASTs maintain an RNA-independent, “untargeted” transposition pathway alongside RNA-dependent integration, driven by the local availability of TnsC filaments. Using cryo–electron microscopy, single-molecule experiments, and high-throughput sequencing, we found that a minimal, CRISPR-less transpososome preferentially directs untargeted integration at AT-rich sites, with additional local specificity imparted by TnsB. By exploiting this knowledge, we suppressed untargeted transposition and increased type V-K CAST specificity up to 98.1% in cells without compromising on-target integration efficiency. These findings will inform further engineering of CAST systems for accurate, kilobase-scale genome engineering applications.  more » « less
Award ID(s):
1719875
PAR ID:
10548646
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science
Volume:
382
Issue:
6672
ISSN:
0036-8075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. CRISPR-associated transposition systems allow guide RNA–directed integration of a single DNA cargo in one orientation at a fixed distance from a programmable target sequence. We used cryo–electron microscopy (cryo-EM) to define the mechanism that underlies this process by characterizing the transposition regulator, TnsC, from a type V-K CRISPR-transposase system. In this scenario, polymerization of adenosine triphosphate–bound TnsC helical filaments could explain how polarity information is passed to the transposase. TniQ caps the TnsC filament, representing a universal mechanism for target information transfer in Tn7/Tn7-like elements. Transposase-driven disassembly establishes delivery of the element only to unused protospacers. Finally, TnsC transitions to define the fixed point of insertion, as revealed by structures with the transition state mimic ADP•AlF 3 . These mechanistic findings provide the underpinnings for engineering CRISPR-associated transposition systems for research and therapeutic applications. 
    more » « less
  2. CRISPR-associated transposons (CASTs) are Tn7-like elements that are capable of RNA-guided DNA integration. Although structural data are known for nearly all core transposition components, the transposase component, TnsB, remains uncharacterized. Using cryo-electron microscopy (cryo-EM) structure determination, we reveal the conformation of TnsB during transposon integration for the type V-K CAST system from Scytonema hofmanni (ShCAST). Our structure of TnsB is a tetramer, revealing strong mechanistic relationships with the overall architecture of RNaseH transposases/integrases in general, and in particular the MuA transposase from bacteriophage Mu. However, key structural differences in the C-terminal domains indicate that TnsB’s tetrameric architecture is stabilized by a different set of protein–protein interactions compared with MuA. We describe the base-specific interactions along the TnsB binding site, which explain how different CAST elements can function on cognate mobile elements independent of one another. We observe that melting of the 5′ nontransferred strand of the transposon end is a structural feature stabilized by TnsB and furthermore is crucial for donor–DNA integration. Although not observed in the TnsB strand-transfer complex, the C-terminal end of TnsB serves a crucial role in transposase recruitment to the target site. The C-terminal end of TnsB adopts a short, structured 15-residue “hook” that decorates TnsC filaments. Unlike full-length TnsB, C-terminal fragments do not appear to stimulate filament disassembly using two different assays, suggesting that additional interactions between TnsB and TnsC are required for redistributing TnsC to appropriate targets. The structural information presented here will help guide future work in modifying these important systems as programmable gene integration tools. 
    more » « less
  3. CRISPR-associated transposons (CASTs) are RNA-guided mobile genetic elements that are widespread in bacterial genomes. Here, we describe the UltraCAST, a suicide vector with the Vibrio cholerae Type I-F CAST system and Golden Gate assembly sites with fluorescent protein gene dropouts for guide RNA and a mini-transposon cargo cloning. We show an example of UltraCAST genome editing by disrupting a gene in the chromosome of Serratia symbiotica CWBI-2.3T, a culturable relative of aphid endosymbionts. The UltraCAST can be used to flexibly insert DNA into specific genomic sites and facilitates testing this genome editing platform in non-model bacterial species that lack genetic tools. 
    more » « less
  4. TheVibrio choleraeCascade–TniQ complex unveiled a new paradigm in biology, demonstrating that CRISPR-associated proteins can direct DNA transposition. Despite the tremendous potential of “knocking-in” genes at desired sites, the mechanisms underlying DNA binding and transposition remain elusive. In this system, a conformational change of the Cas8 protein is essential for DNA binding, yet how it occurs is unclear. Here, structural modeling and free energy simulations reconstruct the Cas8 helical bundle and reveal an open–closed conformational change that is key for the complex’s function. We show that when Cascade–TniQ binds RNA, the Cas8 bundle changes conformation mediated by the interaction with the Cas7.1 protein. This interaction promotes the bundle’s transition toward the open state, priming the complex for DNA binding. As the target DNA binds the guide RNA, the opening of the Cas8 bundle becomes more favorable, exposing positively charged residues and facilitating their interaction with DNA, which ultimately leads the DNA-binding process to completion. These outcomes provide a dynamic representation of a critical conformational change in one of the largest CRISPR systems and illustrate its role at critical steps of the Cascade–TniQ biophysical function, advancing our understanding of nucleic acid binding and transposition mechanisms. 
    more » « less
  5. Abstract A genetic knockout can be lethal to one human cell type while increasing growth rate in another. This context specificity confounds genetic analysis and prevents reproducible genome engineering. Genome-wide CRISPR compendia across most common human cell lines offer the largest opportunity to understand the biology of cell specificity. The prevailing viewpoint, synthetic lethality, occurs when a genetic alteration creates a unique CRISPR dependency. Here, we use machine learning for an unbiased investigation of cell type specificity. Quantifying model accuracy, we find that most cell type specific phenotypes are predicted by the function of related genes of wild-type sequence, not synthetic lethal relationships. These models then identify unexpected sets of 100-300 genes where reduced CRISPR measurements can produce genome-scale loss-of-function predictions across >18,000 genes. Thus, it is possible to reduce in vitro CRISPR libraries by orders of magnitude—with some information loss—when we remove redundant genes and not redundant sgRNAs. 
    more » « less