Abstract We present an analysis of a densely repeating sample of bursts from the first repeating fast radio burst, FRB 121102. We reanalyzed the data used by Gourdji et al. and detected 93 additional bursts using our single-pulse search pipeline. In total, we detected 133 bursts in three hours of data at a center frequency of 1.4 GHz using the Arecibo telescope, and develop robust modeling strategies to constrain the spectro-temporal properties of all of the bursts in the sample. Most of the burst profiles show a scattering tail, and burst spectra are well modeled by a Gaussian with a median width of 230 MHz. We find a lack of emission below 1300 MHz, consistent with previous studies of FRB 121102. We also find that the peak of the log-normal distribution of wait times decreases from 207 to 75 s using our larger sample of bursts, as compared to that of Gourdji et al. Our observations do not favor either Poissonian or Weibull distributions for the burst rate distribution. We searched for periodicity in the bursts using multiple techniques, but did not detect any significant period. The cumulative burst energy distribution exhibits a broken power-law shape, with the lower- and higher-energy slopes of −0.4 ± 0.1 and −1.8 ± 0.2, with the break at (2.3 ± 0.2) × 10 37 erg. We provide our burst fitting routines as a Python package burstfit 4 4 https://github.com/thepetabyteproject/burstfit that can be used to model the spectrogram of any complex fast radio burst or pulsar pulse using robust fitting techniques. All of the other analysis scripts and results are publicly available. 5 5 https://github.com/thepetabyteproject/FRB121102
more »
« less
Observational Effects of Banded Repeating FRBs
Abstract Recent observations have shown that repeating fast radio bursts (FRBs) exhibit band-limited emission, whose frequency-dependent amplitude can be modeled using a Gaussian function. In this analysis, we show that banded emission of FRBs can lead to incompleteness across the observing band. This biases the detected sample of bursts and can explain the various shapes of cumulative energy distributions seen for repeating FRBs. We assume a Gaussian shape of the burst spectra and use simulations to demonstrate the above bias using an FRB 121102-like example. We recovered energy distributions that showed a break in power law and flattening of power law at low energies, based on the fluence threshold of the observations. We provide recommendations for single-pulse searches and analysis of repeating FRBs to account for this incompleteness. Primarily, we recommend that burst spectra should be modeled to estimate the intrinsic fluence and bandwidth of the burst robustly. Also, bursts that lie mainly within the observing band should be used for analyses of energy distributions. We show that the bimodality reported in the distribution of energies of FRB 121102 by Li et al. disappears when burst bandwidth, instead of the center frequency of the observation, is used to estimate energy. Subbanded searches will also aid in detecting band-limited bursts. All the analysis scripts used in this work are available in a Github repository (https://github.com/KshitijAggarwal/banded_repeater_analysis).
more »
« less
- Award ID(s):
- 2108673
- PAR ID:
- 10548675
- Publisher / Repository:
- Astrophysical Journal Letters
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 920
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L18
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fast radio bursts (FRBs) are highly dispersed millisecond-duration radio bursts,[1,2]of which the physical origin is still not fully understood. FRB 20201124A is one of the most actively repeating FRBs. In this paper, we present the collection of 1863 burst dynamic spectra of FRB 20201124A measured with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The current collection, taken from the observation during the FRB active phase from April to June 2021, is the largest burst sample detected for any FRB so far. The standard PSRFITs format is adopted, including dynamic spectra of the burst, and the time information of the dynamic spectra, in addition, mask files help readers to identify the pulse positions are also provided. The dataset is available in Science Data Bank, with the linkhttps://www.doi.org/10.57760/sciencedb.j00113.00076.more » « less
-
ABSTRACT FRB 20220912A is a repeating Fast Radio Burst (FRB) that was discovered in Fall 2022 and remained highly active for several months. We report the detection of 35 FRBs from 541 h of follow-up observations of this source using the recently refurbished Allen Telescope Array, covering 1344 MHz of bandwidth primarily centred at 1572 MHz. All 35 FRBs were detected in the lower half of the band with non-detections in the upper half and covered fluences from 4–431 Jy-ms (median = 48.27 Jy-ms). We find consistency with previous repeater studies for a range of spectrotemporal features including: bursts with downward frequency drifting over time; a positive correlation between bandwidth and centre frequency; and a decrease in sub-burst duration over time. We report an apparent decrease in the centre frequency of observed bursts over the two months of the observing campaign (corresponding to a drop of 6.21 ± 0.76 MHz per d). We predict a cut-off fluence for FRB 20220912A of Fmax ≲ 104 Jy-ms, for this source to be consistent with the all-sky rate, and find that FRB 20220912A significantly contributed to the all-sky FRB rate at a level of a few per cent for fluences of ∼100 Jy-ms. Finally, we investigate characteristic time-scales and sub-burst periodicities and find (a) a median inter-subburst time-scale of 5.82 ± 1.16 ms in the multi-component bursts and (b) no evidence of strict periodicity even in the most evenly spaced multi-component burst in the sample. Our results demonstrate the importance of wideband observations of FRBs, and provide an important set of observational parameters against which to compare FRB progenitor and emission mechanism models.more » « less
-
ABSTRACT The analogy of the host galaxy of the repeating fast radio burst (FRB) source FRB 121102 and those of long gamma-ray bursts (GRBs) and superluminous supernovae (SLSNe) has led to the suggestion that young magnetars born in GRBs and SLSNe could be the central engine of repeating FRBs. We test such a hypothesis by performing dedicated observations of the remnants of six GRBs with evidence of having a magnetar central engine using the Arecibo telescope and the Robert C. Byrd Green Bank Telescope (GBT). A total of ∼20 h of observations of these sources did not detect any FRB from these remnants. Under the assumptions that all these GRBs left behind a long-lived magnetar and that the bursting rate of FRB 121102 is typical for a magnetar FRB engine, we estimate a non-detection probability of 8.9 × 10−6. Even though these non-detections cannot exclude the young magnetar model of FRBs, we place constraints on the burst rate and luminosity function of FRBs from these GRB targets.more » « less
-
null (Ed.)ABSTRACT The origin of fast radio bursts (FRBs) still remains a mystery, even with the increased number of discoveries in the last 3 yr. Growing evidence suggests that some FRBs may originate from magnetars. Large, single-dish telescopes such as Arecibo Observatory (AO) and Green Bank Telescope (GBT) have the sensitivity to detect FRB 121102-like bursts at gigaparsec distances. Here, we present searches using AO and GBT that aimed to find potential radio bursts at 11 sites of past gamma-ray bursts that show evidence for the birth of a magnetar. We also performed a search towards GW170817, which has a merger remnant whose nature remains uncertain. We place $$10\sigma$$ fluence upper limits of ≈0.036 Jy ms at 1.4 GHz and ≈0.063 Jy ms at 4.5 GHz for the AO data and fluence upper limits of ≈0.085 Jy ms at 1.4 GHz and ≈0.098 Jy ms at 1.9 GHz for the GBT data, for a maximum pulse width of ≈42 ms. The AO observations had sufficient sensitivity to detect any FRB of similar luminosity to the one recently detected from the Galactic magnetar SGR 1935+2154. Assuming a Schechter function for the luminosity function of FRBs, we find that our non-detections favour a steep power-law index (α ≲ −1.1) and a large cut-off luminosity (L0 ≳ 1041 erg s−1).more » « less
An official website of the United States government

