skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Degradation of lubricating molecules in synovial fluid alters chondrocyte sensitivity to shear strain
Abstract Articular joints facilitate motion and transfer loads to underlying bone through a combination of cartilage tissue and synovial fluid, which together generate a low‐friction contact surface. Traumatic injury delivered to cartilage and the surrounding joint capsule causes secretion of proinflammatory cytokines by chondrocytes and the synovium, triggering cartilage matrix breakdown and impairing the ability of synovial fluid to lubricate the joint. Once these inflammatory processes become chronic, posttraumatic osteoarthritis (PTOA) development begins. However, the exact mechanism by which negative alterations to synovial fluid leads to PTOA pathogenesis is not fully understood. We hypothesize that removing the lubricating macromolecules from synovial fluid alters the relationship between mechanical loads and subsequent chondrocyte behavior in injured cartilage. To test this hypothesis, we utilized an ex vivo model of PTOA that involves subjecting cartilage explants to a single rapid impact followed by continuous articulation within a lubricating bath of either healthy synovial fluid, phosphate‐buffered saline (PBS), synovial fluid treated with hyaluronidase, or synovial fluid treated with trypsin. These treatments degrade the main macromolecules attributed with providing synovial fluid with its lubricating properties; hyaluronic acid and lubricin. Explants were then bisected and fluorescently stained to assess global and depth‐dependent cell death, caspase activity, and mitochondrial depolarization. Explants were tested via confocal elastography to determine the local shear strain profile generated in each lubricant. These results show that degrading hyaluronic acid or lubricin in synovial fluid significantly increases middle zone chondrocyte damage and shear strain loading magnitudes, while also altering chondrocyte sensitivity to loading.  more » « less
Award ID(s):
1719875 2245367
PAR ID:
10548777
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley Online Library
Date Published:
Journal Name:
Journal of Orthopaedic Research
ISSN:
0736-0266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Inflammation of the synovium, known as synovitis, plays an important role in the pathogenesis of osteoarthritis (OA). Synovitis involves the release of a wide variety of pro‐inflammatory mediators in synovial fluid (SF) that damage the articular cartilage extracellular matrix and induce death and apoptosis in chondrocytes. The composition of synovial fluid is dramatically altered by inflammation in OA, with changes to both hyaluronic acid and lubricin, the primary lubricating molecules in SF. However, the relationship between key biochemical markers of joint inflammation and mechanical function of SF is not well understood. Here, we demonstrate the application of a novel analytical framework to measure the effective viscosity for SF lubrication of cartilage, which is distinct from conventional rheological viscosity. Notably, in a well‐established equine model of synovitis, this effective lubricating viscosity decreased by up to 10,000‐fold for synovitis SF compared to a ~4 fold change in conventional viscosity measurements. Further, the effective lubricating viscosity was strongly inversely correlated (r = −0.6 to −0.8) to multiple established biochemical markers of SF inflammation, including white blood cell count, prostaglandin E2(PGE2), and chemokine ligand (CCLs) concentrations, while conventional measurements of viscosity were poorly correlated to these markers. These findings demonstrate the importance of experimental and analytical approaches to characterize functional lubricating properties of synovial fluid and their relationships to soluble biomarkers to better understand the progression of OA. 
    more » « less
  2. Abstract Post‐traumatic osteoarthritis develops following an inciting injury to a joint and results in cartilage degeneration. Mechanical loading, including articulation, drives anabolic responses in cartilage clinically, in vivo, and in vitro. Tribological articulation, or sliding of cartilage on a glass counterface, has long been used as an in vitro tool to study cartilage tissue behavior. However, it is unclear if tribological articulation affects chondrocyte fate following injury, and if the timing of articulation impacts the resultant effect. The goal of this study was to investigate the effect of tribological articulation on injured cartilage tissue at two time points: (i) performed immediately after injury and (ii) 24 h after injury. Neonatal bovine femoral cartilage explants were injured using a rapid spring‐loaded impactor and subsequently subjected to tribological articulation. Cell death due to impact injury was highest near the articular surface, suggesting a strain‐dependent mechanism. Immediate articulation following injury mitigated cell death compared to injury alone or delayed articulation; markers for both general cell death and early‐stage apoptosis were markedly decreased in the explants that were immediately slid. Interestingly, mitigation of cell death due to sliding was most predominant at the cartilage surface. Tribological articulation is known to create fluid flow within the tissue, predominantly at the articular surface, which could drive the protective response seen here. Altogether, this work shows that perturbations to the cellular environment immediately following cartilage injury significantly impact chondrocyte fate. 
    more » « less
  3. Abstract The low friction nature of articular cartilage has been attributed to the synergistic interaction between lubricin and hyaluronic acid in the synovial fluid (SF). Lubricin is a mucinous glycoprotein that lowers the boundary mode coefficient of friction of articular cartilage in a dose‐dependent manner. While there have been multiple attempts to produce recombinant lubricin and lubricin mimetic cartilage lubricants over the last two decades, these materials have not found clinical use due to challenges associated with large scale production, manufacturing, and purification. Recently, a novel method using codon scrambling was developed to produce a stable, full‐length bioengineered equine lubricin (eLub) in large reproducible quantities. While preliminary frictional analysis of eLub and other recombinantly produced forms revealed they can lubricate cartilage, a complete tribological characterization is lacking, with previous studies evaluating the friction coefficient only at a single dose or a single speed. The objective of this study was to analyze the dose‐dependent tribological properties of eLub using the Stribeck framework of tribological analysis. Recombinantly produced eLub at doses greater than 1.5 mg/mL exhibits friction coefficients on par with healthy bovine SF, and a maximal 5 mg/mL dose exhibits a nearly 50% lower friction coefficient than healthy SF. eLub also modulates the shift in lubrication mode of the cartilage from the high friction boundary mode to the low friction minimum mode at high concentrations. 
    more » « less
  4. Abstract Articular cartilage (AC) is a load-bearing tissue that covers long bones in synovial joints. The biphasic/poroelastic mechanical properties of AC help it to protect joints by distributing loads, absorbing impact forces, and reducing friction. Unfortunately, alterations in these mechanical properties adversely impact cartilage function and precede joint degeneration in the form of osteoarthritis (OA). Thus, understanding what factors regulate the poroelastic mechanical properties of cartilage is of great scientific and clinical interest. Transgenic mouse models provide a valuable platform to delineate how specific genes contribute to cartilage mechanical properties. However, the poroelastic mechanical properties of murine articular cartilage are challenging to measure due to its small size (thickness ∼ 50 microns). In the current study, our objective was to test whether the poroelastic mechanical properties of murine articular cartilage can be determined based solely on time-dependent cell death measurements under constant loading conditions. We hypothesized that in murine articular cartilage subjected to constant, sub-impact loading from an incongruent surface, cell death area and tissue strain are closely correlated. We further hypothesized that the relationship between cell death area and tissue strain can be used—in combination with inverse finite element modeling—to compute poroelastic mechanical properties. To test these hypotheses, murine cartilage-on-bone explants from different anatomical locations were subjected to constant loading conditions by an incongruent surface in a custom device. Cell death area increased over time and scaled linearly with strain, which rose in magnitude over time due to poroelastic creep. Thus, we were able to infer tissue strain from cell death area measurements. Moreover, using tissue strain values inferred from cell death area measurements, we applied an inverse finite element modeling procedure to compute poroelastic material properties and acquired data consistent with previous studies. Collectively, our findings demonstrate in the key role poroelastic creep plays in mediating cell survival in mechanically loaded cartilage and verify that cell death area can be used as a surrogate measure of tissue strain that enables determination of murine cartilage mechanical properties. 
    more » « less
  5. ABSTRACT The articular cartilage extracellular matrix (ECM) is a complex network of biomolecules that includes fibronectin (FN). FN acts as an extracellular glue, controlling the assembly of other macromolecular constituents to the ECM. However, how FN participates in the binding and retention of synovial fluid components, the natural lubricant of articulated joints, to form a wear-protecting and lubricating film has not been established. This study reports on the role of FN and its molecular conformation in mediating macromolecular assembly of synovial fluid ad-layers. FN films as precursor films on functionalized surfaces, a model of FN’s articular cartilage surface, adsorbed and retained different amounts of synovial fluid (SF). FN conformational changes were induced by depositing FN at pH 7 (extended state) or at pH 4 (unfolded state) on self-assembled monolayers on gold-coated quartz crystals, followed by adsorption of diluted SF (25%) onto FN precursor films. Mass density, thin film compliance, surface morphologies, and adsorbed FN films’ secondary and tertiary structures reveal pH-induced differences. FN films deposited at pH 4 were thicker, more rigid, showed a more homogeneous morphology, and had alteredα-helix andβ-sheet content, compared to FN films deposited at pH 7. FN precursor films deposited at pH 7 adsorbed and retained more synovial fluid than those at pH 4, revealing the importance of FN conformation at the articular cartilage surface to bind and maintain a thin lubricating and wear protective layer of synovial fluid constituents. This knowledge will enable a better understanding of the molecular regulation of articular cartilage-SF interface homeostasis and joint pathophysiology and identify molecular interactions and synergies between the articular cartilage ECM and SF to reveal the complexity of joint biotribology. 
    more » « less