Electron microscopy (EM) enables the reconstruction of neural circuits at the level of individual synapses, which has been transformative for scientific discoveries. However, due to the complex morphology, an accurate reconstruction of cortical axons has become a major challenge. Worse still, there is no publicly available large-scale EM dataset from the cortex that provides dense ground truth segmentation for axons, making it difficult to develop and evaluate large-scale axon reconstruction methods. To address this, we introduce the AxonEM dataset, which consists of two 30x30x30 cubic mm EM image volumes from the human and mouse cortex, respectively. We thoroughly proofread over 18,000 axon instances to provide dense 3D axon instance segmentation, enabling large- scale evaluation of axon reconstruction methods. In addition, we densely annotate nine ground truth subvolumes for training, per each data volume. With this, we reproduce two published state-of-the-art methods and provide their evaluation results as a baseline. We publicly release our code and data at https://connectomics-bazaar.github.io/proj/ AxonEM/index.html to foster the development of advanced methods.
more »
« less
WASPSYN: A Challenge for Domain Adaptive Synapse Detection in Microwasp Brain Connectomes
The size of image volumes in connectomics studies now reaches terabyte and often petabyte scales with a great diversity of appearance due to different sample preparation procedures. However, manual annotation of neuronal structures (e.g., synapses) in these huge image volumes is time-consuming, leading to limited labeled training data often smaller than 0.001% of the large-scale image volumes in application. Methods that can utilize in-domain labeled data and generalize to out-of-domain unlabeled data are in urgent need. Although many domain adaptation approaches are proposed to address such issues in the natural image domain, few of them have been evaluated on connectomics data due to a lack of domain adaptation benchmarks. Therefore, to enable developments of domain adaptive synapse detection methods for large-scale connectomics applications, we annotated 14 image volumes from a biologically diverse set of Megaphragma viggianii brain regions originating from three different whole-brain datasets and organized the WASPSYN challenge at ISBI 2023. The annotations include coordinates of pre-synapses and post-synapses in the 3D space, together with their one-to-many connectivity information. This paper describes the dataset, the tasks, the proposed baseline, the evaluation method, and the results of the challenge. Limitations of the challenge and the impact on neuroscience research are also discussed. The challenge is and will continue to be available at https://codalab.lisn.upsaclay.fr/competitions/9169. Successful algorithms that emerge from our challenge may potentially revolutionize real-world connectomics research and further the cause that aims to unravel the complexity of brain structure and function.
more »
« less
- Award ID(s):
- 2124179
- PAR ID:
- 10548799
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Medical Imaging
- ISSN:
- 0278-0062
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The field of connectomics aims to reconstruct the wiring diagram of Neurons and synapses to enable new insights into the workings of the brain. Reconstructing and analyzing the Neuronal connectivity, however, relies on many individual steps, starting from high‐resolution data acquisition to automated segmentation, proofreading, interactive data exploration, and circuit analysis. All of these steps have to handle large and complex datasets and rely on or benefit from integrated visualization methods. In this state‐of‐the‐art report, we describe visualization methods that can be applied throughout the connectomics pipeline, from data acquisition to circuit analysis. We first define the different steps of the pipeline and focus on how visualization is currently integrated into these steps. We also survey open science initiatives in connectomics, including usable open‐source tools and publicly available datasets. Finally, we discuss open challenges and possible future directions of this exciting research field.more » « less
-
Cloud masking is both a fundamental and a critical task in the vast majority of Earth observation problems across social sectors, including agriculture, energy, water, etc. The sheer volume of satellite imagery to be processed has fast-climbed to a scale (e.g., >10 PBs/year) that is prohibitive for manual processing. Meanwhile, generating reliable cloud masks and image composite is increasingly challenging due to the continued distribution-shifts in the imagery collected by existing sensors and the ever-growing variety of sensors and platforms. Moreover, labeled samples are scarce and geographically limited compared to the needs in real large-scale applications. In related work, traditional remote sensing methods are often physics-based and rely on special spectral signatures from multi- or hyper-spectral bands, which are often not available in data collected by many -- and especially more recent -- high-resolution platforms. Machine learning and deep learning based methods, on the other hand, often require large volumes of up-to-date training data to be reliable and generalizable over space. We propose an autonomous image composition and masking (Auto-CM) framework to learn to solve the fundamental tasks in a label-free manner, by leveraging different dynamics of events in both geographic domains and time-series. Our experiments show that Auto-CM outperforms existing methods on a wide-range of data with different satellite platforms, geographic regions and bands.more » « less
-
Recent years have witnessed the great success of deep learning models in semantic segmentation. Nevertheless, these models may not generalize well to unseen image domains due to the phenomenon of domain shift. Since pixel-level annotations are laborious to collect, developing algorithms which can adapt labeled data from source domain to target domain is of great significance. To this end, we propose self-ensembling attention networks to reduce the domain gap between different datasets. To the best of our knowledge, the proposed method is the first attempt to introduce selfensembling model to domain adaptation for semantic segmentation, which provides a different view on how to learn domain-invariant features. Besides, since different regions in the image usually correspond to different levels of domain gap, we introduce the attention mechanism into the proposed framework to generate attention-aware features, which are further utilized to guide the calculation of consistency loss in the target domain. Experiments on two benchmark datasets demonstrate that the proposed framework can yield competitive performance compared with the state of the art methods.more » « less
-
Recent advances in high-resolution connectomics provide researchers access to accurate reconstructions of vast neuronal circuits and brain networks for the first time. Neuroscientists anticipate analyzing these networks to gain a better understanding of information processing in the brain. In particular, scientists are interested in identifying specific network motifs, i.e., repeating subgraphs of the larger brain network that are believed to be neuronal building blocks. To analyze these motifs, it is crucial to review instances of a motif in the brain network and then map the graph structure to the detailed 3D reconstructions of the involved neurons and synapses. We present Vimo, an interactive visual approach to analyze neuronal motifs and motif chains in large brain networks. Experts can sketch network motifs intuitively in a visual interface and specify structural properties of the involved neurons and synapses to query large connectomics datasets. Motif instances (MIs) can be explored in high-resolution 3D renderings of the involved neurons and synapses. To reduce visual clutter and simplify the analysis of MIs, we designed a continuous focus&context metaphor inspired by continuous visual abstractions [MAAB∗18] that allows the user to transition from the highly-detailed rendering of the anatomical structure to views that emphasize the underlying motif structure and synaptic connectivity. Furthermore, Vimo supports the identification of motif chains where a motif is used repeatedly to form a longer synaptic chain. We evaluate Vimo in a user study with seven domain experts and an in-depth case study on motifs in the central complex (CX) of the fruit fly brain.more » « less