skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automated Network Services for Exascale Data Movement
The Large Hadron Collider (LHC) experiments distribute data by leveraging a diverse array of National Research and Education Networks (NRENs), where experiment data management systems treat networks as a “blackbox” resource. After the High Luminosity upgrade, the Compact Muon Solenoid (CMS) experiment alone will produce roughly 0.5 exabytes of data per year. NREN Networks are a critical part of the success of CMS and other LHC experiments. However, during data movement, NRENs are unaware of data priorities, importance, or need for quality of service, and this poses a challenge for operators to coordinate the movement of data and have predictable data flows across multi-domain networks. The overarching goal of SENSE (The Software-defined network for End-to-end Networked Science at Exascale) is to enable National Labs and universities to request and provision end-to-end intelligent network services for their application workflows leveraging SDN (Software-Defined Networking) capabilities. This work aims to allow LHC Experiments and Rucio, the data management software used by CMS Experiment, to allocate and prioritize certain data transfers over the wide area network. In this paper, we will present the current progress of the integration of SENSE, Multi-domain end-to-end SDN Orchestration with QoS (Quality of Service) capabilities, with Rucio, the data management software used by CMS Experiment.  more » « less
Award ID(s):
2019012
PAR ID:
10548861
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
De_Vita, R; Espinal, X; Laycock, P; Shadura, O
Publisher / Repository:
EPJ Web of Conferences
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
295
ISSN:
2100-014X
Page Range / eLocation ID:
01009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated network connections between research facilities for transferring large amounts of data. Recently, R&E networks have started using Software-Defined Networking (SDN) and Software Defined Exchanges (SDX) for deploying these connections. AtlanticWave/SDX is a response to the growing demand to support end-to-end network services spanning multiple SDN domains. However, requesting these services is a challenging task for domain-expert scientists, because the interfaces of the R&E networks have been developed by network operators for network operators. In this paper, we propose interfaces that allow domain expert scientists to reserve resources of the scientific network using abstractions that focus on their data transfer needs for scientific workflow management. Recent trends in the networking field pursue better interfaces for requesting network services (e.g., intent-based networking). Although intents are sufficient for the needs of network operations, they are not abstract enough in most cases to be used by domain-expert scientists. This is an issue we are addressing in the AtlanticWave/SDX design: network operators and domain-expert scientists will have their own interfaces focusing on their specific needs. 
    more » « less
  2. Poster Abstract: To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated network connections between research facilities for transferring large amounts of data. Recently, R&E networks have started using Software-Defined Networking (SDN) and Software Defined Exchanges (SDX) for deploying these connections. AtlanticWave/SDX is a response to the growing demand to support end-to-end network services spanning multiple SDN domains. However, requesting these services is a challenging task for domain-expert scientists, because the interfaces of the R&E networks have been developed by network operators for network operators. In this paper, we propose interfaces that allow domain expert scientists to reserve resources of the scientific network using abstractions that focus on their data transfer needs for scientific workflow management. Recent trends in the networking field pursue better interfaces for requesting network services (e.g., intent-based networking). Although intents are sufficient for the needs of network operations, they are not abstract enough in most cases to be used by domain-expert scientists. This is an issue we are addressing in the AtlanticWave/SDX design: network operators and domain expert scientists will have their own interfaces focusing on their specific needs. 
    more » « less
  3. A key concept of software-defined networking (SDN) is separation of the control and data plane. This idea provides several benefits, including fine-grained network control and monitoring, and the ability to deploy new services in a limited scope. Unfortunately, it is often cost-prohibitive for enterprises (and universities in particular) to upgrade their existing networks to wholly SDN-capable networks all at once. A compromise solution is to deploy SDN capabilities incrementally in the network. The challenge then is to take full advantage of SDN-based services throughout the network, in an integrated fashion rather than in a few "islands" of SDN support. At the University of Kentucky, SDN has been integrated into the campus network for several years. In this paper, we describe two aspects of this challenge, along with our solution approaches. One is the general reluctance of campus network administrations to allow novel or experimental (SDN-based) services in the production network. The other is how to extend such services throughout the legacy part of the network. For the former, we lay out a set of principles designed to ensure that the production service is not harmed. For the latter, we use policy based routing and a graph database to extend our previously-described VIP Lanes service. Our simulation results in a campus-like topology testbed show that we can provide a host with custom path service even if it is connected to a legacy router. 
    more » « less
  4. null (Ed.)
    Wireless infrastructure is steadily evolving into wireless access for all humans and most devices, from 5G to Internet-of-Things. This widespread access creates the expectation of custom and adaptive services from the personal network to the backbone network. In addition, challenges of scale and interoperability exist across networks, applications and services, requiring an effective wireless network management infrastructure. For this reason Software-Defined Networks (SDN) have become an attractive research area for wireless and mobile systems. SDN can respond to sporadic topology issues such as dropped packets, message latency, and/or conflicting resource management, to improved collaboration between mobile access points, reduced interference and increased security options. Until recently, the main focus on wireless SDN has been a more centralized approach, which has issues with scalability, fault tolerance, and security. In this work, we propose a state of the art WAM-SDN system for large-scale network management. We discuss requirements for large scale wireless distributed WAM-SDN and provide preliminary benchmarking and performance analysis based on our hybrid distributed and decentralized architecture. Keywords: software defined networks, controller optimization, resilience. 
    more » « less
  5. Software Defined Networking (SDN) and Network Function Virtualization (NFV) are transforming Data Center (DC), Telecom, and enterprise networking. The programmability offered by P4 enables SDN to be more protocol-independent and flexible. Data Centers are increasingly adopting SmartNICs (sNICs) to accelerate packet processing that can be leveraged to support packet processing pipelines and custom Network Functions (NFs). However, there are several challenges in integrating and deploying P4 based SDN control as well as host and sNIC-based programmable NFs. These include configuration and management of the data plane components (Host and sNIC P4 switches) for the SDN control plane and effective utilization of data plane resources. P4NFV addresses these concerns and provides a unified P4 switch abstraction framework to simplify the SDN control plane, reducing management complexities, and leveraging a host-local SDN Agent to improve the overall resource utilization. The SDN agent considers the network-wide, host, and sNIC specific capabilities and constraints. Based on workload and traffic characteristics, P4NFV determines the partitioning of the P4 tables and optimal placement of NFs (P4 actions) to minimize the overall delay and maximize resource utilization. P4NFV uses Mixed Integer Linear Programming (MILP) based optimization formulation and achieves up to 2. 5X increase in system capacity while minimizing the delay experienced by flows. P4NFV considers the number of packet exchanges, flow size, and state dependency to minimize the delay imposed by data transmission over PCI Express interface. 
    more » « less