skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A nonsolvolytic fluorine/LiNO 3 -containing electrolyte for stabilizing dynamic interfaces in Li||LiMn 2 O 4 batteries
Complementary characterization results show that chemical dissolution of transition metal in LiMn2O4is caused by solvolysis-generated HF, which can be suppresed by rational design of a group of nonsolvolytic electrolytes.  more » « less
Award ID(s):
1719875
PAR ID:
10548901
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
RSC Advances
Volume:
14
Issue:
21
ISSN:
2046-2069
Page Range / eLocation ID:
14964 to 14972
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The crystal structure of the title compound, hexaaquanickel(II) dichloride–1,4,7,10,13,16-hexaoxacyclooctadecane–water (1/2/2), [Ni(H2O)6]Cl2·2C12H24O6·2H2O, is reported. The asymmetric unit contains half of the Ni(OH2)6moiety with a formula of C12H32ClNi0.50O10at 105 K and triclinic (P1) symmetry. The [Ni(OH2)6]2+cation has close to ideal octahedral geometry with O—Ni—O bond angles that are within 3° of idealized values. The supramolecular structure includes hydrogen bonding between the water ligands, 18-crown-6 molecules, Clanions, and co-crystallized water solvent. Two crown ether molecules flank the [Ni(OH2)6]2+molecule at the axial positions in a sandwich-like structure. The relatively symmetric hydrogen-bonding network is enabled by small Clcounter-ions and likely influences the more idealized octahedral geometry of [Ni(OH2)6]2+
    more » « less
  2. Abstract The rapid development of computing applications demands novel low‐energy consumption devices for information processing. Among various candidates, magnetoelectric heterostructures hold promise for meeting the required voltage and power goals. Here, a route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3(PMN‐PT) heterostructures is demonstrated wherein the magnetoelectric coupling is achieved via strain‐induced changes in the Fe0.5Rh0.5mediated by voltages applied to the PMN‐PT. We describe approaches to achieve high‐quality, epitaxial growth of Fe0.5Rh0.5on the PMN‐PT films and, a methodology to probe and quantify magnetoelectric coupling in small thin‐film devices via studies of the anomalous Hall effect. By comparing the spin‐flop field change induced by temperature and external voltage, the magnetoelectric coupling coefficient is estimated to reach ≈7 × 10−8 s m−1at 325 K while applying a −0.75 V bias. 
    more » « less
  3. Alcoholysis of (C5H4SiMe)3Ln results in bimetallic complexes with unexpected decreases in Ln⋯Ln distances as bridging alkoxides become bulkier. These complexes were characterized by DOSY NMR, CV, DPV, and a LaIIspecies was observed by EPR. 
    more » « less
  4. Abstract Reactions oftrans‐(C6F5)(p‐tol3P)2Pt(C≡C)nSiEt3(PtC2nSi;n=5, 7, 9) and excessPtClin the presence of wetn‐Bu4N+F(to effect protodesilylation) under Sonogashira‐type conditions (CuCl, base, other additives) afford the title compoundsPtC10Pt,PtC14Pt, andPtC18Ptin 42–32 % yields. A four‐fold substitution of the phosphine ligands inPtC10Ptby PEt3affordsPt'C10Pt’(78 %), and a Sonogashira reaction ofPt'C2HandPt'ClaffordsPt'C2Pt’(68 %). The analogous reaction withPtC2SiandPtClis unsuccessful, presumably for steric reasons. The crystal structures ofPtC10Pt,PtC14Pt,Pt'C10Pt′, andPt'C2Pt’exhibit a number of interesting trends and features. Certain sp chain extension reactions that lead to or employ the precursorsPtC10Si,PtC12Si,PtC14Si, andPtC18Sisometimes give byproducts derived from C2loss, and possible origins are discussed. Related phenomena have been reported by others in the course of synthesizing extended conjugated polyynes. 
    more » « less
  5. Abstract Three multi‐shell metalloid gold clusters of the composition Au32(R3P)12Cl8(R=Et,nPr,nBu) were synthesized in a straightforward fashion by reducing R3PAuCl with NaBH4in ethanol. The Au32core comprises two shells, with the inner one constituting a tilted icosahedron and the outer one showing a distorted dodecahedral arrangement. The outer shell is completed by eight chloride atoms and twelve R3P groups. The inner icosahedron shows bond lengths typical for elemental gold while the distances of the gold atoms in the dodecahedral arrangement are in the region of aurophilic interactions. Quantum‐chemical calculations illustrate that the Jahn–Teller effect observed within the cluster core can be attributed to the electronic shell filling. The easily reproducible synthesis, good solubility, and high yields of these clusters render them perfect starting points for further research. 
    more » « less