The minimum-gain eigenvalue assignment/pole placement problem (MGEAP) is a classical problem in LTI systems with static state feedback. In this paper, we study the MGEAP when the state feedback has arbitrary sparsity constraints. We formulate the sparse MGEAP problem as an equality-constrained optimization problem and present an analytical characterization of its locally optimal solution in terms of eigenvector matrices of the closed loop system. This result is used to provide a geometric interpretation of the solution of the non-sparse MGEAP, thereby providing additional insights for this classical problem. Further, we develop an iterative projected gradient descent algorithm to obtain local solutions for the sparse MGEAP using a parametrization based on the Sylvester equation. We present a heuristic algorithm to compute the projections, which also provides a novel method to solve the sparse EAP. Also, a relaxed version of the sparse MGEAP is presented and an algorithm is developed to obtain approximately sparse local solutions to the MGEAP. Finally, numerical studies are presented to compare the properties of the algorithms, which suggest that the proposed projec 
                        more » 
                        « less   
                    This content will become publicly available on November 1, 2025
                            
                            Fast algorithms for maximizing the minimum eigenvalue in fixed dimension
                        
                    
    
            In the minimum eigenvalue problem, we are given a collection of vectors and the goal is to pick a subset B to maximize the minimum eigenvalue of the matrix formed by the sum of their outer products. We give a -time randomized algorithm that finds an assignment subject to a partition constraint whose minimum eigenvalue is at least $$1-\epsilon$$ times the optimum, with high probability. As a byproduct, we also get a simple algorithm for an algorithmic version of Kadison-Singer problem. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10548928
- Publisher / Repository:
- North-Holland
- Date Published:
- Journal Name:
- Operations Research Letters
- Volume:
- 57
- Issue:
- C
- ISSN:
- 0167-6377
- Page Range / eLocation ID:
- 107186
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Langevin dynamics (LD) has been proven to be a powerful technique for optimizing a non-convex objective as an efficient algorithm to find local minima while eventually visiting a global minimum on longer time-scales. LD is based on the first-order Langevin diffusion which is reversible in time. We study two variants that are based on non-reversible Langevin diffusions: the underdamped Langevin dynamics (ULD) and the Langevin dynamics with a non-symmetric drift (NLD). Adopting the techniques of Tzen et al. (2018) for LD to non-reversible diffusions, we show that for a given local minimum that is within an arbitrary distance from the initialization, with high probability, either the ULD trajectory ends up somewhere outside a small neighborhood of this local minimum within a recurrence time which depends on the smallest eigenvalue of the Hessian at the local minimum or they enter this neighborhood by the recurrence time and stay there for a potentially exponentially long escape time. The ULD algorithm improves upon the recurrence time obtained for LD in Tzen et al. (2018) with respect to the dependency on the smallest eigenvalue of the Hessian at the local minimum. Similar results and improvements are obtained for the NLD algorithm. We also show that non-reversible variants can exit the basin of attraction of a local minimum faster in discrete time when the objective has two local minima separated by a saddle point and quantify the amount of improvement. Our analysis suggests that non-reversible Langevin algorithms are more efficient to locate a local minimum as well as exploring the state space.more » « less
- 
            We apply the method of inverse iteration to the Laplace eigenvalue problem with Robin and mixed Dirichlet-Neumann boundary conditions, respectively. For each problem, we prove convergence of the iterates to a non-trivial principal eigenfunction and show that the corresponding Rayleigh quotients converge to the principal eigenvalue. We also propose a related iterative method for an eigenvalue problem arising from a model for optimal insulation and provide some partial results.more » « less
- 
            We consider the classical Minimum Crossing Number problem: given an n-vertex graph G, compute a drawing of G in the plane, while minimizing the number of crossings between the images of its edges. This is a fundamental and extensively studied problem, whose approximability status is widely open. In all currently known approximation algorithms, the approximation factor depends polynomially on Δ – the maximum vertex degree in G. The best current approximation algorithm achieves an O(n1/2−· (Δ·logn))-approximation, for a small fixed constant є, while the best negative result is APX-hardness, leaving a large gap in our understanding of this basic problem. In this paper we design a randomized O(2O((logn)7/8loglogn)·(Δ))-approximation algorithm for Minimum Crossing Number. This is the first approximation algorithm for the problem that achieves a subpolynomial in n approximation factor (albeit only in graphs whose maximum vertex degree is subpolynomial in n). In order to achieve this approximation factor, we design a new algorithm for a closely related problem called Crossing Number with Rotation System, in which, for every vertex v∈ V(G), the circular ordering, in which the images of the edges incident to v must enter the image of v in the drawing is fixed as part of input. Combining this result with the recent reduction of [Chuzhoy, Mahabadi, Tan ’20] immediately yields the improved approximation algorithm for Minimum Crossing Number.more » « less
- 
            In an extremal eigenvalue problem, one considers a family of eigenvalue problems, each with discrete spectra, and extremizes a chosen eigenvalue over the family. In this chapter, we consider eigenvalue problems defined on Riemannian manifolds and extremize over the metric structure. For example, we consider the problem of maximizing the principal Laplace–Beltrami eigenvalue over a family of closed surfaces of fixed volume. Computational approaches to such extremal geometric eigenvalue problems present new computational challenges and require novel numerical tools, such as the parameterization of conformal classes and the development of accurate and efficient methods to solve eigenvalue problems on domains with nontrivial genus and boundary. We highlight recent progress on computational approaches for extremal geometric eigenvalue problems, including (i) maximizing Laplace–Beltrami eigenvalues on closed surfaces and (ii) maximizing Steklov eigenvalues on surfaces with boundary.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
