Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Experimental design is a classical statistics problem, and its aim is to estimate an unknown vector from linear measurements where a Gaussian noise is introduced in each measurement. For the combinatorial experimental design problem, the goal is to pick a subset of experiments so as to make the most accurate estimate of the unknown parameters. In this paper, we will study one of the most robust measures of error estimation—the Doptimality criterion, which corresponds to minimizing the volume of the confidence ellipsoid for the estimation error. The problem gives rise to two natural variants depending on whether repetitions of experimentsmore »

Dimensionality reduction is a classical technique widely used for data analysis. One foundational instantiation is Principal Component Analysis (PCA), which minimizes the average reconstruction error. In this paper, we introduce the multicriteria dimensionality reduction problem where we are given multiple objectives that need to be optimized simultaneously. As an application, our model captures several fairness criteria for dimensionality reduction such as the FairPCA problem introduced by Samadi et al. [NeurIPS18] and the Nash Social Welfare (NSW) problem. In the FairPCA problem, the input data is divided into k groups, and the goal is to find a single ddimensional representation formore »

In an optimal design problem, we are given a set of linear experiments v1,…,vn∈Rd and k≥d, and our goal is to select a set or a multiset S⊆[n] of size k such that Φ((∑i∈Sviv⊤i)−1) is minimized. When Φ(M)=Determinant(M)1/d, the problem is known as the Doptimal design problem, and when Φ(M)=Trace(M), it is known as the Aoptimal design problem. One of the most common heuristics used in practice to solve these problems is the local search heuristic, also known as the Fedorov’s exchange method (Fedorov, 1972). This is due to its simplicity and its empirical performance (Cook and Nachtrheim, 1980; Millermore »