skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 13, 2026

Title: Inverse Iteration for the Laplace Eigenvalue Problem With Robin and Mixed Boundary Conditions
We apply the method of inverse iteration to the Laplace eigenvalue problem with Robin and mixed Dirichlet-Neumann boundary conditions, respectively. For each problem, we prove convergence of the iterates to a non-trivial principal eigenfunction and show that the corresponding Rayleigh quotients converge to the principal eigenvalue. We also propose a related iterative method for an eigenvalue problem arising from a model for optimal insulation and provide some partial results.  more » « less
Award ID(s):
2246611
PAR ID:
10618242
Author(s) / Creator(s):
; ;
Publisher / Repository:
CSU Open Journals
Date Published:
Journal Name:
PUMP journal of undergraduate research
Volume:
8
ISSN:
2576-3725
Page Range / eLocation ID:
173 to 194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In an extremal eigenvalue problem, one considers a family of eigenvalue problems, each with discrete spectra, and extremizes a chosen eigenvalue over the family. In this chapter, we consider eigenvalue problems defined on Riemannian manifolds and extremize over the metric structure. For example, we consider the problem of maximizing the principal Laplace–Beltrami eigenvalue over a family of closed surfaces of fixed volume. Computational approaches to such extremal geometric eigenvalue problems present new computational challenges and require novel numerical tools, such as the parameterization of conformal classes and the development of accurate and efficient methods to solve eigenvalue problems on domains with nontrivial genus and boundary. We highlight recent progress on computational approaches for extremal geometric eigenvalue problems, including (i) maximizing Laplace–Beltrami eigenvalues on closed surfaces and (ii) maximizing Steklov eigenvalues on surfaces with boundary. 
    more » « less
  2. null (Ed.)
    Abstract We prove a regularity theorem for the free boundary of minimizers of the two-phase Bernoulli problem, completing the analysis started by Alt, Caffarelli and Friedman in the 80s. As a consequence, we also show regularity of minimizers of the multiphase spectral optimization problem for the principal eigenvalue of the Dirichlet Laplacian. 
    more » « less
  3. The discretized Bethe-Salpeter eigenvalue (BSE) problem arises in many body physics and quantum chemistry. Discretization leads to an {\color{black}algebraic} eigenvalue problem involving a matrix $$H\in \mathbb{C}^{2n\times 2n}$$ with a Hamiltonian-like structure. With proper transformations, {\color{black}the real BSE eigenproblem of form I and the complex BSE eigenproblem of form II} can be transformed into real product eigenvalue problems of order $$n$$ and $2n$, respectively. We propose a new variant of the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) {\color{black}enhanced with polynomial filters} to improve the robustness and effectiveness of a few well-known algorithms for computing the lowest eigenvalues of the product eigenproblems. {\color{black}Furthermore, our proposed method can be easily employed to solve large sparse standard symmetric eigenvalue problems.} We show that our ideal locally optimal algorithm delivers Rayleigh quotient approximation to the desired lowest eigenvalue that satisfies a global quasi-optimality, which is similar to the global optimality of the preconditioned conjugate gradient method for the iterative solution of a symmetric positive definite linear system. The robustness and efficiency of {\color{black}our proposed method} is illustrated by numerical experiments. 
    more » « less
  4. We compute the Tracy-Widom distribution describing the asymptotic distribution of the largest eigenvalue of a large random matrix by solving a boundary-value problem posed by Bloemendal in his Ph.D. Thesis (2011). The distribution is computed in two ways. The first method is a second-order finite-difference method and the second is a highly accurate Fourier spectral method. Since $$\beta$$ is simply a parameter in the boundary-value problem, any $$\beta> 0$$ can be used, in principle. The limiting distribution of the $$n$$th largest eigenvalue can also be computed. Our methods are available in the Julia package TracyWidomBeta.jl. 
    more » « less
  5. null (Ed.)
    Recently Fraser and Schoen showed that the solution of a certain extremal Steklov eigenvalue problem on a compact surface with boundary can be used to generate a free boundary minimal surface, i.e. , a surface contained in the ball that has (i) zero mean curvature and (ii) meets the boundary of the ball orthogonally (doi: 10.1007/s00222-015-0604-x ). In this paper, we develop numerical methods that use this connection to realize free boundary minimal surfaces. Namely, on a compact surface, Σ, with genus γ and b boundary components, we maximize σ j (Σ, g )  L ( ∂ Σ, g ) over a class of smooth metrics, g , where σ j (Σ, g ) is the j th nonzero Steklov eigenvalue and L ( ∂ Σ, g ) is the length of ∂ Σ. Our numerical method involves (i) using conformal uniformization of multiply connected domains to avoid explicit parameterization for the class of metrics, (ii) accurately solving a boundary-weighted Steklov eigenvalue problem in multi-connected domains, and (iii) developing gradient-based optimization methods for this non-smooth eigenvalue optimization problem. For genus γ = 0 and b = 2, …, 9, 12, 15, 20 boundary components, we numerically solve the extremal Steklov problem for the first eigenvalue. The corresponding eigenfunctions generate a free boundary minimal surface, which we display in striking images. For higher eigenvalues, numerical evidence suggests that the maximizers are degenerate, but we compute local maximizers for the second and third eigenvalues with b = 2 boundary components and for the third and fifth eigenvalues with b = 3 boundary components. 
    more » « less