A<sc>bstract</sc> In this paper we explorepp→W±(ℓ±ν)γto$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ in the SMEFT expansion. Calculations to this order are necessary to properly capture SMEFT contributions that grow with energy, as the interference between energy-enhanced SMEFT effects at$$ \mathcal{O}\left(1/{\Lambda}^2\right) $$ and the Standard Model is suppressed. We find that there are several dimension eight operators that interfere with the Standard Model and lead to the same energy growth, ~$$ \mathcal{O}\left({E}^4/{\Lambda}^4\right) $$ , as dimension six squared. While energy-enhanced SMEFT contributions are a main focus, our calculation includes the complete set of$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ SMEFT effects consistent with U(3)5flavor symmetry. Additionally, we include the decay of theW±→ ℓ±ν, making the calculation actually$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ . As such, we are able to study the impact of non-resonant SMEFT operators, such as$$ \left({L}^{\dagger }{\overline{\sigma}}^{\mu }{\tau}^IL\right)\left({Q}^{\dagger }{\overline{\sigma}}^{\nu }{\tau}^IQ\right) $$ Bμν, which contribute to$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ directly and not to$$ \overline{q}{q}^{\prime}\to {W}^{\pm}\gamma $$ . We show several distributions to illustrate the shape differences of the different contributions.
more »
« less
Energy-dependent barren plateau in bosonic variational quantum circuits
Abstract Bosonic variational quantum circuits (VQCs) are crucial for information processing in microwave cavities, trapped ions, and optical systems, widely applicable in quantum communication, sensing and error correction. The trainability of such VQCs is less understood, hindered by the lack of theoretical tools such ast-design due to the infinite dimension of the continuous-variable systems involved. We overcome this difficulty to reveal an energy-dependent barren plateau in such VQCs. The variance of the gradient decays as , exponential in the number of modesMbut polynomial in the (per-mode) circuit energyE. The exponentν = 1 for shallow circuits andν = 2 for deep circuits. We prove these results for state preparation of general Gaussian states and number states. We also provide numerical evidence demonstrating that the results extend to general state preparation tasks. As circuit energy is a controllable parameter, we provide a strategy to mitigate the barren plateau in bosonic continuous-variable VQCs.
more »
« less
- Award ID(s):
- 2142882
- PAR ID:
- 10548981
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Quantum Science and Technology
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2058-9565
- Format(s):
- Medium: X Size: Article No. 015009
- Size(s):
- Article No. 015009
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in$$\mathsf {Quasi}\text {-}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$$ and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$$\mathcal { C}$$ , by showing that$$\mathcal { C}$$ admits non-trivial satisfiability and/or#SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a non-trivial#SAT algorithm for a circuit class$${\mathcal C}$$ . Say that a symmetric Boolean functionf(x1,…,xn) issparseif it outputs 1 onO(1) values of$${\sum }_{i} x_{i}$$ . We show that for every sparsef, and for all “typical”$$\mathcal { C}$$ , faster#SAT algorithms for$$\mathcal { C}$$ circuits imply lower bounds against the circuit class$$f \circ \mathcal { C}$$ , which may bestrongerthan$$\mathcal { C}$$ itself. In particular:#SAT algorithms fornk-size$$\mathcal { C}$$ -circuits running in 2n/nktime (for allk) implyNEXPdoes not have$$(f \circ \mathcal { C})$$ -circuits of polynomial size.#SAT algorithms for$$2^{n^{{\varepsilon }}}$$ -size$$\mathcal { C}$$ -circuits running in$$2^{n-n^{{\varepsilon }}}$$ time (for someε> 0) implyQuasi-NPdoes not have$$(f \circ \mathcal { C})$$ -circuits of polynomial size. Applying#SAT algorithms from the literature, one immediate corollary of our results is thatQuasi-NPdoes not haveEMAJ∘ACC0∘THRcircuits of polynomial size, whereEMAJis the “exact majority” function, improving previous lower bounds againstACC0[Williams JACM’14] andACC0∘THR[Williams STOC’14], [Murray-Williams STOC’18]. This is the first nontrivial lower bound against such a circuit class.more » « less
-
Abstract Two-dimensional electron systems subjected to high transverse magnetic fields can exhibit Fractional Quantum Hall Effects (FQHE). In the GaAs/AlGaAs 2D electron system, a double degeneracy of Landau levels due to electron-spin, is removed by a small Zeeman spin splitting,$$g \mu _B B$$ , comparable to the correlation energy. Then, a change of the Zeeman splitting relative to the correlation energy can lead to a re-ordering between spin polarized, partially polarized, and unpolarized many body ground states at a constant filling factor. We show here that tuning the spin energy can produce fractionally quantized Hall effect transitions that include both a change in$$\nu$$ for the$$R_{xx}$$ minimum, e.g., from$$\nu = 11/7$$ to$$\nu = 8/5$$ , and a corresponding change in the$$R_{xy}$$ , e.g., from$$R_{xy}/R_{K} = (11/7)^{-1}$$ to$$R_{xy}/R_{K} = (8/5)^{-1}$$ , with increasing tilt angle. Further, we exhibit a striking size dependence in the tilt angle interval for the vanishing of the$$\nu = 4/3$$ and$$\nu = 7/5$$ resistance minima, including “avoided crossing” type lineshape characteristics, and observable shifts of$$R_{xy}$$ at the$$R_{xx}$$ minima- the latter occurring for$$\nu = 4/3, 7/5$$ and the 10/7. The results demonstrate both size dependence and the possibility, not just of competition between different spin polarized states at the same$$\nu$$ and$$R_{xy}$$ , but also the tilt- or Zeeman-energy-dependent- crossover between distinct FQHE associated with different Hall resistances.more » « less
-
Abstract We prove that$${{\,\textrm{poly}\,}}(t) \cdot n^{1/D}$$ -depth local random quantum circuits with two qudit nearest-neighbor gates on aD-dimensional lattice withnqudits are approximatet-designs in various measures. These include the “monomial” measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was$${{\,\textrm{poly}\,}}(t)\cdot n$$ due to Brandão–Harrow–Horodecki (Commun Math Phys 346(2):397–434, 2016) for$$D=1$$ . We also improve the “scrambling” and “decoupling” bounds for spatially local random circuits due to Brown and Fawzi (Scrambling speed of random quantum circuits, 2012). One consequence of our result is that assuming the polynomial hierarchy ($${{\,\mathrm{\textsf{PH}}\,}}$$ ) is infinite and that certain counting problems are$$\#{\textsf{P}}$$ -hard “on average”, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constant-depth quantum circuits was known to be hard for classical computers under these assumptions. However the standard strategy for extending this hardness result to approximate sampling requires the quantum circuits to have a property called “anti-concentration”, meaning roughly that the output has near-maximal entropy. Unitary 2-designs have the desired anti-concentration property. Our result improves the required depth for this level of anti-concentration from linear depth to a sub-linear value, depending on the geometry of the interactions. This is relevant to a recent experiment by the Google Quantum AI group to perform such a sampling task with 53 qubits on a two-dimensional lattice (Arute in Nature 574(7779):505–510, 2019; Boixo et al. in Nate Phys 14(6):595–600, 2018) (and related experiments by USTC), and confirms their conjecture that$$O(\sqrt{n})$$ depth suffices for anti-concentration. The proof is based on a previous construction oft-designs by Brandão et al. (2016), an analysis of how approximate designs behave under composition, and an extension of the quasi-orthogonality of permutation operators developed by Brandão et al. (2016). Different versions of the approximate design condition correspond to different norms, and part of our contribution is to introduce the norm corresponding to anti-concentration and to establish equivalence between these various norms for low-depth circuits. For random circuits with long-range gates, we use different methods to show that anti-concentration happens at circuit size$$O(n\ln ^2 n)$$ corresponding to depth$$O(\ln ^3 n)$$ . We also show a lower bound of$$\Omega (n \ln n)$$ for the size of such circuit in this case. We also prove that anti-concentration is possible in depth$$O(\ln n \ln \ln n)$$ (size$$O(n \ln n \ln \ln n)$$ ) using a different model.more » « less
-
Abstract The electricE1 and magneticM1 dipole responses of the$$N=Z$$ nucleus$$^{24}$$ Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ Mg($$\gamma ,\gamma ^{\prime }$$ ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$J^{\pi }=1^-$$ , four$$J^{\pi }=1^+$$ , and six$$J^{\pi }=2^+$$ states in$$^{24}$$ Mg. De-excitation$$\gamma $$ rays were detected using the four high-purity germanium detectors of the$$\gamma $$ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ is observed, but this$$N=Z$$ nucleus exhibits only marginalE1 strength of less than$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$ e$$^2 \, $$ fm$$^2$$ . The$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ branching ratios in combination with the expected results from the Alaga rules demonstrate thatKis a good approximative quantum number for$$^{24}$$ Mg. The use of the known$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ strength and the measured$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ branching ratio of the 10.712 MeV$$1^+$$ level allows, in a two-state mixing model, an extraction of the difference$$\varDelta \beta _2^2$$ between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$0^+_2$$ level.more » « less
An official website of the United States government
