Abstract. Climate variability in the last millennium (past 1000 years) is dominated by the effects of large-magnitude volcanic eruptions; however, a long-standing mismatch exists between model-simulated and tree-ring-derived surface cooling. Accounting for the self-limiting effects of large sulfur dioxide (SO2) injections and the limitations in tree-ring records, such as lagged responses due to biological memory, reconciles some of the discrepancy, but uncertainties remain, particularly for the largest tropical eruptions. The representation of volcanic forcing in the latest generation of climate models has improved significantly, but most models prescribe the aerosol optical properties rather than using SO2 emissions directly and including interactions between the aerosol, chemistry, and dynamics. Here, we use the UK Earth System Model (UKESM) to simulate the climate of the last millennium (1250–1850 CE) using volcanic SO2 emissions. Averaged across all large-magnitude eruptions, we find similar Northern Hemisphere (NH) summer cooling compared with other last-millennium climate simulations from the Paleoclimate Modelling Intercomparison Project Phase 4 (PMIP4), run with both SO2 emissions and prescribed forcing, and a continued overestimation of surface cooling compared with tree-ring reconstructions. However, for the largest-magnitude tropical eruptions in 1257 (Mt. Samalas) and 1815 (Mt. Tambora), some models, including UKESM1, suggest a smaller NH summer cooling that is in better agreement with tree-ring records. In UKESM1, we find that the simulated volcanic forcing differs considerably from the PMIP4 dataset used in models without interactive aerosol schemes, with marked differences in the hemispheric spread of the aerosol, resulting in lower forcing in the NH when SO2 emissions are used. Our results suggest that, for the largest tropical eruptions, the spatial distribution of aerosol can account for some of the discrepancies between model-simulated and tree-ring-derived cooling. Further work should therefore focus on better resolving the spatial distribution of aerosol forcing for past eruptions.
more »
« less
The 852/3 CE Mount Churchill eruption: examining the potential climatic and societal impacts and the timing of the Medieval Climate Anomaly in the North Atlantic region
Abstract. The 852/3 CE eruption of Mount Churchill, Alaska, was one of the largestfirst-millennium volcanic events, with a magnitude of 6.7 (VEI 6) and atephra volume of 39.4–61.9 km3 (95 % confidence). The spatial extent of the ash fallout from this event is considerable and the cryptotephra (White River Ash east; WRAe) extends as far as Finland and Poland. Proximal ecosystem and societal disturbances have been linked with this eruption; however, wider eruption impacts on climate and society are unknown. Greenland ice core records show that the eruption occurred in winter 852/3 ± 1 CE and that the eruption is associated with a relatively moderate sulfate aerosol loading but large abundances of volcanic ash and chlorine. Here we assess the potential broader impact of this eruption using palaeoenvironmental reconstructions, historical records and climate model simulations. We also use the fortuitous timing of the 852/3 CE Churchill eruption and its extensively widespread tephra deposition of the White River Ash (east) (WRAe) to examine the climatic expression of the warm Medieval Climate Anomaly period (MCA; ca. 950–1250 CE) from precisely linked peatlands in the North Atlantic region. The reconstructed climate forcing potential of the 852/3 CE Churchill eruptionis moderate compared with the eruption magnitude, but tree-ring-inferredtemperatures report a significant atmospheric cooling of 0.8 ∘Cin summer 853 CE. Modelled climate scenarios also show a cooling in 853 CE, although the average magnitude of cooling is smaller (0.3 ∘C). The simulated spatial patterns of cooling are generally similar to those generated using the tree-ring-inferred temperature reconstructions. Tree-ring-inferred cooling begins prior to the date of the eruption suggesting that natural internal climate variability may have increased the climate system's susceptibility to further cooling. The magnitude of the reconstructed cooling could also suggest that the climate forcing potential of this eruption may be underestimated, thereby highlighting the need for greater insight into, and consideration of, the role of halogens and volcanic ash when estimating eruption climate forcing potential. Precise comparisons of palaeoenvironmental records from peatlands acrossNorth America and Europe, facilitated by the presence of the WRAe isochron,reveal no consistent MCA signal. These findings contribute to the growingbody of evidence that characterises the MCA hydroclimate astime-transgressive and heterogeneous rather than a well-defined climaticperiod. The presence of the WRAe isochron also demonstrates that nolong-term (multidecadal) climatic or societal impacts from the 852/3 CEChurchill eruption were identified beyond areas proximal to the eruption.Historical evidence in Europe for subsistence crises demonstrate a degree of temporal correspondence on interannual timescales, but similar events were reported outside of the eruption period and were common in the 9thcentury. The 852/3 CE Churchill eruption exemplifies the difficulties ofidentifying and confirming volcanic impacts for a single eruption, even whenthe eruption has a small age uncertainty.
more »
« less
- Award ID(s):
- 1824770
- PAR ID:
- 10549127
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- European Geosciences Union, Copernicus Publications
- Date Published:
- Journal Name:
- Climate of the Past
- Volume:
- 18
- Issue:
- 6
- ISSN:
- 1814-9332
- Page Range / eLocation ID:
- 1475 to 1508
- Subject(s) / Keyword(s):
- Mount Churchill volcanic eruption, palynology, tree-rings, historical climatology, Nile
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma–crust interactions with evaporite rocks. Here, we undertake a high-resolution multiproxy geochemical analysis of ice-core archives spanning the 1831 CE volcanic event. S isotopes confirm a major Northern Hemisphere stratospheric eruption but, importantly, rule out significant contributions from external evaporite S. In multiple ice cores, we identify cryptotephra layers of low K andesite-dacite glass shards occurring in summer 1831 CE and immediately prior to the stratospheric S fallout. This tephra matches the chemistry of the youngest Plinian eruption of Zavaritskii, a remote nested caldera on Simushir Island (Kurils). Radiocarbon ages confirm a recent (<300 y) eruption of Zavaritskii, and erupted volume estimates are consistent with a magnitude 5 to 6 event. The reconstructed radiative forcing of Zavaritskii (−2 ± 1 W m−2) is comparable to the 1991 CE Pinatubo eruption and can readily account for the climate cooling in 1831–1833 CE. These data provide compelling evidence that Zavaritskii was the source of the 1831 CE mystery eruption and solve a confounding case of multiple closely spaced observed and unobserved volcanic eruptions.more » « less
-
The 540s, 1450s, and 1600s represent three of the five coldest decades in the Common Era (CE). In each of these cases, the cause of these cold pulses has been attributed to large volcanic eruptions. However, the provenance of the eruption and magnitude of the volcanic forcing remains uncertain. Here, we use high-resolution sulfur isotopes in Greenland and Antarctic ice cores measured across these events to provide a means of improving sulfur loading estimates for these eruptions. In each case, the largest reconstructed tree-ring cooling is associated with an extratropical eruption, and the high-altitude stratospheric sulfate loading of these events is substantially smaller than previous estimates (by up to a factor of two). These results suggest an increased sensitivity of the reconstructed Northern Hemisphere summer temperature response to extratropical eruptions. This highlights the importance of climate feedbacks and processes that amplify and prolong the cooling signal from high latitudes, such as changes in sea ice extent and ocean heat content.more » « less
-
Paleoclimate reconstructions for the western US show spatial variability in the timing, duration, and magnitude of climate changes within the Medieval Climate Anomaly (MCA, ca. 900–1350 CE) and Little Ice Age (LIA, ca. 1350–1850 CE), indicating that additional data are needed to more completely characterize late-Holocene climate change in the region. Here, we use dendrochronology to investigate how climate changes during the MCA and LIA affected a treeline, whitebark pine ( Pinus albicaulis Engelm.) ecosystem in the Greater Yellowstone Ecoregion (GYE). We present two new millennial-length tree-ring chronologies and multiple lines of tree-ring evidence from living and remnant whitebark pine and Engelmann spruce ( Picea engelmannii Parry ex. Engelm.) trees, including patterns of establishment and mortality; changes in tree growth; frost rings; and blue-intensity-based, reconstructed summer temperatures, to highlight the terminus of the LIA as one of the coldest periods of the last millennium for the GYE. Patterns of tree establishment and mortality indicate conditions favorable to recruitment during the latter half of the MCA and climate-induced mortality of trees during the middle-to-late LIA. These patterns correspond with decreased growth, frost damage, and reconstructed cooler temperature anomalies for the 1800–1850 CE period. Results provide important insight into how past climate change affected important GYE ecosystems and highlight the value of using multiple lines of proxy evidence, along with climate reconstructions of high spatial resolution, to better describe spatial and temporal variability in MCA and LIA climate and the ecological influence of climate change.more » « less
-
Abstract. Volcanic fallout in polar ice sheets provides important opportunities to date and correlate ice-core records as well as to investigate theenvironmental impacts of eruptions. Only the geochemical characterization of volcanic ash (tephra) embedded in the ice strata can confirm the sourceof the eruption, however, and is a requisite if historical eruption ages are to be used as valid chronological checks on annual ice layercounting. Here we report the investigation of ash particles in a Greenland ice core that are associated with a volcanic sulfuric acid layer previouslyattributed to the 79 CE eruption of Vesuvius. Major and trace element composition of the particles indicates that the tephra does not derive fromVesuvius but most likely originates from an unidentified eruption in the Aleutian arc. Using ash dispersal modeling, we find that only an eruptionlarge enough to include stratospheric injection is likely to account for the sizable (24–85 µm) ash particles observed in the Greenlandice at this time. Despite its likely explosivity, this event does not appear to have triggered significant climate perturbations, unlike some otherlarge extratropical eruptions. In light of a recent re-evaluation of the Greenland ice-core chronologies, our findings further challenge the previousassignation of this volcanic event to 79 CE. We highlight the need for the revised Common Era ice-core chronology to be formally accepted by the widerice-core and climate modeling communities in order to ensure robust age linkages to precisely dated historical and paleoclimate proxy records.more » « less
An official website of the United States government

