A unique chain-rupturing transformation that converts an ether functionality into two hydrocarbyl units and carbon monoxide is reported, mediated by iridium( i ) complexes supported by aminophenylphosphinite (NCOP) pincer ligands. The decarbonylation, which involves the cleavage of one C–C bond, one C–O bond, and two C–H bonds, along with formation of two new C–H bonds, was serendipitously discovered upon dehydrochlorination of an iridium( iii ) complex containing an aza-18-crown-6 ether macrocycle. Intramolecular cleavage of macrocyclic and acyclic ethers was also found in analogous complexes featuring aza-15-crown-5 ether or bis(2-methoxyethyl)amino groups. Intermolecular decarbonylation of cyclic and linear ethers was observed when diethylaminophenylphosphinite iridium( i ) dinitrogen or norbornene complexes were employed. Mechanistic studies reveal the nature of key intermediates along a pathway involving initial iridium( i )-mediated double C–H bond activation.
more »
« less
Synthesis and Electrochemical Studies of Nickel Complexes with a Flexidentate Bipyridine-aza-crown Ether Ligand
Bipyridine ligands have been extensively employed in nickel catalysis, with ligand modifications focused on steric or electronic tuning. In this work, we explore modifications designed to modulate the coordination mode using a 2,2'-bipyridine derivative with an appended aza-crown ether macrocycle capable of flexidentate binding to nickel. A series of complexes varying in charge from neutral to dicationic demonstrates the flexibility of the macrocycle, with bipyridine-aza-crown ether denticity changing from к4 to к6 upon sequential abstraction of chloride ligands. The changes in binding mode can be reversed by addition of chloride ion. Comparisons between the macrocycle-containing ligand and an analogous ligand with a non-macrocyclic diethylamine donor provide insight into the role of the crown ether, including in electrochemical reductions probed via cyclic voltammetry.
more »
« less
- Award ID(s):
- 2117287
- PAR ID:
- 10549152
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aza-crown ether structures have been proven to be effective in constructing fluorescent biosensors for selectively detecting and imaging alkali metal ions in biological environments. However, choosing the right aza-crown ether for a specific alkali metal ion remains challenging for synthetic chemists because theoretical guidance on the chelating activities between aza-crown ethers and alkali metal ions has not been available up to now. Predicting the physical properties of the chelator–metal complexations poses a greater challenge due to the numerous quantum mechanical functionals and basis sets to be used in any theoretical investigation. In this study, we report a theoretical investigation of different aza-crown ether structures and their selectivities to alkali metal ions via a novel relationship between the binding energy and charge transfer calculated using twelve different quantum mechanical methods, using a myriad of bases, within the Jacob’s Ladder of Chemical Accuracies. Furthermore, this report represents a guide for the synthetic chemist in the selection of aza-crown ethers in the capturing of specific alkali metal ions, primary objectives, while benchmarking different quantum mechanical calculations, as a secondary objective.more » « less
-
Positively charged metal–ammonia complexes are known to host peripheral, diffuse electrons around their molecular skeleton. The resulting neutral species form materials known as expanded or liquid metals. Alkali, alkaline earth, and transition metals have been investigated previously in experimental and theoretical studies of both the gas and condensed phase. This work is the first ab initio exploration of an f-block metal–ammonia complex. The ground and excited states are calculated for Th0–3+ complexes with ammonia, crown ethers, and aza-crown ethers. For Th3+ complexes, the one valence electron Th populates the metal’s 6d or 7f orbitals. For Th0–2+, the additional electrons prefer occupation of the outer s- and p-type orbitals of the complex, except Th(NH3)10, which uniquely places all four electrons in outer orbitals of the complex. Although thorium coordinates up to ten ammonia ligands, octa-coordinated complexes are more stable. Crown ether complexes have a similar electronic spectrum to ammonia complexes, but excitations of electrons in the outer orbitals of the complex are higher in energy. Aza-crown ethers disfavor the orbitals perpendicular to the crowns, attributed to the N-H bonds pointing along the plane of the crowns.more » « less
-
Cross-electrophile coupling has emerged as an attractive and efficient method for the synthesis of C(sp2)–C(sp3) bonds. These reactions are most often catalyzed by nickel complexes of nitrogenous ligands, especially 2,2’-bipyridines. Precise prediction, selection, and design of optimal ligands remains challenging, despite significant increases in reaction scope and mechanistic understanding. Molecular parame-terization and statistical modeling provide a path to the development of improved bipyridine ligands that will enhance the selectivity of existing reactions and broaden the scope of electrophiles that can be coupled. Herein, we describe the generation of a computational lig-and library, correlation of observed reaction outcomes with features of the ligands, and in silico design of improved bipyridine ligands for Ni-catalyzed cross-electrophile coupling. The new nitrogen-substituted ligands display a fivefold increase in selectivity for product formation versus homodimerization when compared to the current state of the art. This increase in selectivity and yield was general for several cross-electrophile couplings, including the challenging coupling of an aryl chloride with an N-alkylpyridinium salt.more » « less
-
Dibenzo-18-crown-6 (DB18C6) is a single-crown ether that can act as a host for a guest ion. In an effort to illuminate the relationships among structure, dynamics, and thermodynamics of ligand binding in a simple model for understanding the affinity and specificity of ligand interactions, nuclear magnetic resonance (NMR) experiments and density functional theory (DFT) were used to study the interaction of DB18C6 with ammonium ion. 1H-NMR was used to follow the titration of DB18C6 with ammonium chloride in deuterated methanol, a solvent chosen for its amphipathic character. Ammonium ion binds strongly to DB18C6 with a dissociation equilibrium constant at least as low as ~ 10 - 6 M. DFT calculations were used to identify optimized conformations of bound and free DB18C6 and to estimate its binding energy with ammonium ion in implicit solvent. An approach is described that accounts for geometry relaxation in addition to solvation correction and basis set superposition error; to our knowledge, this is the first such report that includes the energy difference from optimizing species geometry. The lowest-energy conformer of free DB18C6 in implicit methanol acquires an open, W-shaped structure that is also the lowest-energy conformer found for the DB18C6-ammonium ion complex. These results form a foundation for further studies of this system by molecular dynamics simulations.more » « less
An official website of the United States government

