Abstract Nutrient enrichment impacts grassland plant diversity such as species richness, functional trait composition and diversity, but whether and how these changes affect ecosystem stability in the face of increasing climate extremes remains largely unknown.We quantified the direct and diversity‐mediated effects of nutrient addition (by nitrogen, phosphorus, and potassium) on the stability of above‐ground biomass production in 10 long‐term grassland experimental sites. We measured five facets of stability as the temporal invariability, resistance during and recovery after extreme dry and wet growing seasons.Leaf traits (leaf carbon, nitrogen, phosphorus, potassium, and specific leaf area) were measured under ambient and nutrient addition conditions in the field and were used to construct the leaf economic spectrum (LES). We calculated functional trait composition and diversity of LES and of single leaf traits. We quantified the contribution of intraspecific trait shifts and species replacement to change in functional trait composition as responses to nutrient addition and its implications for ecosystem stability.Nutrient addition decreased functional trait diversity and drove grassland communities to the faster end of the LES primarily through intraspecific trait shifts, suggesting that intraspecific trait shifts should be included for accurately predicting ecosystem stability. Moreover, the change in functional trait diversity of the LES in turn influenced different facets of stability. That said, these diversity‐mediated effects were overall weak and/or overwhelmed by the direct effects of nutrient addition on stability. As a result, nutrient addition did not strongly impact any of the stability facets. These results were generally consistent using individual leaf traits but the dominant pathways differed. Importantly, major influencing pathways differed using average trait values extracted from global trait databases (e.g. TRY).Synthesis. Investigating changes in multiple facets of plant diversity and their impacts on multidimensional stability under global changes such as nutrient enrichment can improve our understanding of the processes and mechanisms maintaining ecosystem stability.
more »
« less
Long‐Term Alpine Plant Responses to Global Change Drivers Depend on Functional Traits
ABSTRACT Forecasting plant responses under global change is a critical but challenging endeavour. Despite seemingly idiosyncratic responses of species to global change, greater generalisation of ‘winners’ and ‘losers’ may emerge from considering how species functional traits influence responses and how these responses scale to the community level. Here, we synthesised six long‐term global change experiments combined with locally measured functional traits. We quantified the change in abundance and probability of establishment through time for 70 alpine plant species and then assessed if leaf and stature traits were predictive of species and community responses across nitrogen addition, snow addition and warming treatments. Overall, we found that plants with more resource‐acquisitive trait strategies increased in abundance but each global change factor was related to different functional strategies. Nitrogen addition favoured species with lower leaf nitrogen, snow addition favoured species with cheaply constructed leaves and warming showed few consistent trends. Community‐weighted mean changes in trait values in response to nitrogen addition, snow addition and warming were often different from species‐specific trait effects on abundance and establishment, reflecting in part the responses and traits of dominant species. Together, these results highlight that the effects of traits can differ by scale and response of interest.
more »
« less
- Award ID(s):
- 2224439
- PAR ID:
- 10549227
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 27
- Issue:
- 10
- ISSN:
- 1461-023X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Global change is altering patterns of community assembly, with net outcomes dependent on species' responses to the abiotic environment, both directly and mediated through biotic interactions. Here, we assess alpine plant community responses in a 15‐year factorial nitrogen addition, warming and snow manipulation experiment. We used a dynamic competition model to estimate the density‐dependent and ‐independent processes underlying changes in species‐group abundances over time. Density‐dependent shifts in competitive interactions drove long‐term changes in abundance of species‐groups under global change while counteracting environmental drivers limited the growth response of the dominant species through density‐independent mechanisms. Furthermore, competitive interactions shifted with the environment, primarily with nitrogen and drove non‐linear abundance responses across environmental gradients. Our results highlight that global change can either reshuffle species hierarchies or further favour already‐dominant species; predicting which outcome will occur requires incorporating both density‐dependent and ‐independent mechanisms and how they interact across multiple global change factors.more » « less
-
Summary Predicting shifts in species composition with global change remains challenging, but plant functional traits provide a key link to scale from plant to community and ecosystem levels. The extent to which functional trait shifts may mediate ecosystem response to climate change remains a critical question.We ran point‐scale Community Land Model (CLM) simulations with site‐specific functional trait and phenology observations to represent alpine tundra growth strategies. We validated our results with site observations and compared parameterized results to those using the default parameterization. We then quantified the relative contribution of plant functional trait shifts vs climate change scenarios (and the resulting phenological shifts) to uncertainty in future tundra ecosystem productivity outcomes.We found that using community‐specific functional traits and phenology observations significantly improved productivity estimates compared with overestimates in a default simulation. Uncertainty in potential plant trait shifts often had a larger effect on ecosystem productivity responses than uncertainty in the forced response from different climate change scenarios.These findings highlight the key role of functional traits in shaping vegetation responses to climate change and the value of incorporating site‐level measurements into land models to more accurately forecast climate change impacts on ecosystem function.more » « less
-
Abstract Understanding the drivers of trait selection is critical for resolving community assembly processes. Here, we test the importance of environmental filtering and trait covariance for structuring the functional traits of understory herbaceous communities distributed along a natural environmental resource gradient that varied in soil moisture, temperature, and nitrogen availability, produced by different topographic positions in the southern Appalachian Mountains.To uncover potential differences in community‐level trait responses to the resource gradient, we quantified the averages and variances of both abundance‐weighted and unweighted values for six functional traits (vegetative height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, and leaf δ13C) using 15 individuals of each of the 108 species of understory herbs found at two sites in the southern Appalachians of western North Carolina, USA.Environmental variables were better predictors of weighted than unweighted community‐level average trait values for all but height and leaf N, indicating strong environmental filtering of plant abundance. Community‐level variance patterns also showed increased convergence of abundance‐weighted traits as resource limitation became more severe.Functional trait covariance patterns based on weighted averages were uniform across the gradient, whereas coordination based on unweighted averages was inconsistent and varied with environmental context. In line with these results, structural equation modeling revealed that unweighted community‐average traits responded directly to local environmental variation, whereas weighted community‐average traits responded indirectly to local environmental variation through trait coordination.Our finding that trait coordination is more important for explaining the distribution of weighted than unweighted average trait values along the gradient indicates that environmental filtering acts on multiple traits simultaneously, with abundant species possessing more favorable combinations of traits for maximizing fitness in a given environment.more » « less
-
Abstract Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families.more » « less
An official website of the United States government
