In this paper, we investigate hyperelastic and viscoelastic model parameters using Global Sensitivity Analysis(GSA). These models are used to characterize the physical response of many soft-elastomers, which are used in a wide variety of smart material applications. Recent research has shown the effectiveness of using fractional-order calculus operators in modeling the viscoelastic response. The GSA is performed using parameter subset selection (PSS), which quantifies the relative parameter contributions to the linear and nonlinear, fractional-order viscoelastic models. Calibration has been performed to quantify the model parameter uncertainty; however, this analysis has led to questions regarding parameter sensitivity and whether or not the parameters can be uniquely identified given the available data. By performing GSA we can determine which parameters are most influential in the model, and fix non-influential parameters at a nominal value. The model calibration can then be performed to quantify the uncertainty of the influential parameters.
more »
« less
Active subspace analysis and uncertainty quantification for a polydomain ferroelectric phase-field model
We perform parameter subset selection and uncertainty analysis for phase-field models that are applied to the ferroelectric material lead titanate. A motivating objective is to determine which parameters are influential in the sense that their uncertainties directly affect the uncertainty in the model response, and fix noninfluential parameters at nominal values for subsequent uncertainty propagation. We employ Bayesian inference to quantify the uncertainties of gradient exchange parameters governing 180° and 90° tetragonal phase domain wall energies. The uncertainties of influential parameters determined by parameter subset selection are then propagated through the models to obtain credible intervals when estimating energy densities quantifying polarization and strain across domain walls. The results illustrate various properties of Landau and electromechanical coupling parameters and their influence on domain wall interactions. We employ energy statistics, which quantify distances between statistical observations, to compare credible intervals constructed using a complete set of parameters against an influential subset of parameters. These intervals are obtained from the uncertainty propagation of the model input parameters on the domain wall energy densities. The investigation provides critical insight into the development of parameter subset selection, uncertainty quantification, and propagation methodologies for material modeling domain wall structure evolution, informed by density functional theory simulations.
more »
« less
- Award ID(s):
- 1633587
- PAR ID:
- 10549247
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Journal of Intelligent Material Systems and Structures
- Volume:
- 30
- Issue:
- 14
- ISSN:
- 1045-389X
- Format(s):
- Medium: X Size: p. 2027-2051
- Size(s):
- p. 2027-2051
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We compare several different methods to quantify the uncertainty of binding parameters estimated from isothermal titration calorimetry data: the asymptotic standard error from maximum likelihood estimation, error propagation based on a first-order Taylor series expansion, and the Bayesian credible interval. When the methods are applied to simulated experiments and to measurements of Mg(II) binding to EDTA, the asymptotic standard error underestimates the uncertainty in the free energy and enthalpy of binding. Error propagation overestimates the uncertainty for both quantities, except in the simulations, where it underestimates the uncertainty of enthalpy for confidence intervals less than 70%. In both datasets, Bayesian credible intervals are much closer to observed confidence intervals.more » « less
-
Dielectric elastomers are employed for a wide variety of adaptive structures. Many of these soft elastomers exhibit significant rate-dependencies in their response. Accurately quantifying this viscoelastic behavior is non-trivial and in many cases a nonlinear modeling framework is required. Fractional-order operators have been applied to modeling viscoelastic behavior for many years, and recent research has shown fractional-order methods to be effective for nonlinear frameworks. This implementation can become computationally expensive to achieve an accurate approximation of the fractional-order derivative. Accurate estimation of the elastomer’s viscoelastic behavior to quantify parameter uncertainty motivates the use of Markov Chain Monte Carlo (MCMC) methods. Since MCMC is a sampling based method, requiring many model evaluations, efficient estimation of the fractional derivative operator is crucial. In this paper, we demonstrate the effectiveness of using quadrature techniques to approximate the Riemann–Liouville definition for fractional derivatives in the context of estimating the uncertainty of a nonlinear viscoelastic model. We also demonstrate the use of parameter subset selection techniques to isolate parameters that are identifiable in the sense that they are uniquely determined by measured data. For those identifiable parameters, we employ Bayesian inference to compute posterior distributions for parameters. Finally, we propagate parameter uncertainties through the models to compute prediction intervals for quantities of interest.more » « less
-
ABSTRACT Recovering credible cosmological parameter constraints in a weak lensing shear analysis requires an accurate model that can be used to marginalize over nuisance parameters describing potential sources of systematic uncertainty, such as the uncertainties on the sample redshift distribution n(z). Due to the challenge of running Markov chain Monte Carlo (MCMC) in the high-dimensional parameter spaces in which the n(z) uncertainties may be parametrized, it is common practice to simplify the n(z) parametrization or combine MCMC chains that each have a fixed n(z) resampled from the n(z) uncertainties. In this work, we propose a statistically principled Bayesian resampling approach for marginalizing over the n(z) uncertainty using multiple MCMC chains. We self-consistently compare the new method to existing ones from the literature in the context of a forecasted cosmic shear analysis for the HSC three-year shape catalogue, and find that these methods recover statistically consistent error bars for the cosmological parameter constraints for predicted HSC three-year analysis, implying that using the most computationally efficient of the approaches is appropriate. However, we find that for data sets with the constraining power of the full HSC survey data set (and, by implication, those upcoming surveys with even tighter constraints), the choice of method for marginalizing over n(z) uncertainty among the several methods from the literature may modify the 1σ uncertainties on Ωm–S8 constraints by ∼4 per cent, and a careful model selection is needed to ensure credible parameter intervals.more » « less
-
null (Ed.)Abstract. Land models are essential tools for understanding and predicting terrestrial processes and climate–carbon feedbacks in the Earth system, but uncertainties in their future projections are poorly understood. Improvements in physical process realism and the representation of human influence arguably make models more comparable to reality but also increase the degrees of freedom in model configuration, leading to increased parametric uncertainty in projections. In this work we design and implement a machine learning approach to globally calibrate a subset of the parameters of the Community Land Model, version 5 (CLM5) to observations of carbon and water fluxes. We focus on parameters controlling biophysical features such as surface energy balance, hydrology, and carbon uptake. We first use parameter sensitivity simulations and a combination of objective metrics including ranked global mean sensitivity to multiple output variables and non-overlapping spatial pattern responses between parameters to narrow the parameter space and determine a subset of important CLM5 biophysical parameters for further analysis. Using a perturbed parameter ensemble, we then train a series of artificial feed-forward neural networks to emulate CLM5 output given parameter values as input. We use annual mean globally aggregated spatial variability in carbon and water fluxes as our emulation and calibration targets. Validation and out-of-sample tests are used to assess the predictive skill of the networks, and we utilize permutation feature importance and partial dependence methods to better interpret the results. The trained networks are then used to estimate global optimal parameter values with greater computational efficiency than achieved by hand tuning efforts and increased spatial scale relative to previous studies optimizing at a single site. By developing this methodology, our framework can help quantify the contribution of parameter uncertainty to overall uncertainty in land model projections.more » « less
An official website of the United States government
