skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Timescales of Autogenic Noise in River Bedform Evolution and Stratigraphy
Abstract Bedform evolution and preserved cross strata are known to respond to floods. However, it is unclear if autogenic dynamics mask the flood signal in bedform evolution and cross strata. To address this, we characterize the temporal structure of autogenic noise in steady‐state bedform evolution in a physical experiment. Results reveal the existence of bedform groups—quasi‐stable collections of bedforms—that migrate at a similar speed as bedforms. We find that bedform and bedform‐group turnover timescales are the key autogenic timescales of bed evolution that set the transition time‐periods between different noise regimes in bedform evolution. Results suggest that bedform‐group turnover timescale sets the lower limit for detecting flood signals in bedform evolution, and floods with duration shorter than bedform turnover timescale can be severely degraded in bedform evolution and cross strata. Our work provides a new framework for interrogating fluvial cross strata for reconstruction of past floods.  more » « less
Award ID(s):
2032910 1935669
PAR ID:
10512739
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
11
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract River bedforms and their deposits—fluvial cross strata— respond to floods. However, it is unclear if all floods are equally represented in cross strata. Here, using a series of physical experiments in which bedforms were subjected to equivalent flood magnitudes over varying durations, we demonstrate the existence of a lower bound on flood durations that are represented in cross strata. We show that the scour depths and preserved set thickness are indistinguishable from baseflow conditions when the rising‐limb duration of floods is shorter than the baseflow‐equilibrated bedform turnover timescale—time required to displace the volume of a single bedform at baseflow conditions. In contrast, scour depth and preserved set thickness distributions deviate from baseflow conditions when flood rising‐limb duration exceeds the baseflow‐equilibrated bedform turnover timescale, causing preferential preservation of falling‐limb bedform dynamics. Our work provides a previously unrecognized quantitative bound on flood durations that are represented in fluvial cross strata. 
    more » « less
  2. Abstract Fluvial cross strata are fundamental sedimentary structures that record past flow and sediment transport conditions. Bedform preservation can be significantly influenced by the presence of larger‐scale topographic features that cause spatial gradients in flow. However, our understanding of the controls on cross strata preservation in the presence of a morphodynamic hierarchy is limited. Here, using high‐resolution bathymetry from a physical experiment, we quantify bedform evolution and cross strata preservation in a zone of flow expansion and deceleration. Results show that the size and celerity of superimposed bedforms decreases along the host‐bedform lee slope, leading to a systematic downstream increase in the sediment accumulation rate relative to bedform celerity. This increase in local bedform climb angle results in the preservation of a larger fraction of formative bedforms. Our results highlight the need to revise current paleohydraulic reconstruction models, and demonstrates that fluvial morphodynamic hierarchy is a fundamental determinant of sedimentary strata. 
    more » « less
  3. Abstract Fluvial cross strata are depositional products of bedform migration that record formative flow and sediment transport conditions on planetary bodies. Bedform evolution varies with transport stage even under constant flow depths, but our understanding of how prevailing sediment transport conditions affect preserved cross strata is limited. Here, we analyzed experimental bedform evolution and preserved set thickness spanning threshold‐of‐motion to suspension‐dominated transport conditions at multiple equilibrium flow depths. Results show that bedform trough depth and mean preserved set thickness have a parabolic dependence on transport stage, with maximum values observed at intermediate transport stages. Our results indicate that transport stage is a key control on the flow‐depth‐normalized set thickness but set thickness is a poor indicator of flow depth. Thus, the dependence of bedform dimensions on transport stage should be considered in paleohydraulic reconstruction, and the analysis of set thickness may aid in the estimation of ancient fluvial sediment flux. 
    more » « less
  4. Abstract Predicting the transport of bedload tracer particles is a problem of significant theoretical and practical interest. Yet, little understanding exists for transport in rivers in the presence of bedforms, which may trap grains and thereby influence travel distance. In a series of flume experiments with a sandy gravel bed in a large experimental flume, bed elevation and tracer travel distances were measured at high resolution for a range of discharges. As discharge increased, bedform height increased and bedform length decreased, increasing bedform steepness. For all tracer sizes and flow conditions, bedforms act as primary controls on the tracer travel distances. Bedform trapping increases linearly with the ratio of bedform height to tracer grain size, with 50% trapping efficiency for a ratio of two and 90% trapping efficiency for a ratio of four. A theoretical model based on the extended active layer formulation for sediment transport is able to capture much of the distribution of measured travel distances for all tracer sizes and discharges, providing a first connection between tracer transport theory and bedform trapping and indicating normal diffusion of tracers at relatively small timescales. Variable bedform geometry can influence trap efficiency for individual bedforms and the theoretical model can help identify “preferential trapping” conditions. The distribution of tracer travel distances for a mixture of grain sizes and variable discharge, as expected in natural rivers, displays heavy tail characteristics. 
    more » « less
  5. Abstract Microbes are known to shape topographies; however, mechanisms of biofilm‐sediment interactions and the dynamic evolution of biofilm‐covered bedforms remain poorly understood. Here, we explore the effects of synthetic biofilms on the geometry and temporal evolution of underwater bedforms through flume experiments. Our results demonstrate that synthetic biofilms can produce sedimentary structures similar to those formed by natural microbes, including wrinkles, pits, flip‐overs, roll‐ups, mat chips, and erosional edges. We observed the formation of wrinkles, a common geological feature, due to the accumulation of sand grains on the biofilms. Furthermore, we demonstrated that biofilms can reduce bed roughness by an order of magnitude in the low flow regime. However, the subsequent biofilm‐sediment interactions can increase local bedform size, forming multi‐scale geometries of bedforms. Our study improves the fundamental understanding of the landscape dynamics of bedforms covered by natural biofilms. 
    more » « less