Abstract Flat hydrodynamic shells likely represent an evolutionary trade-off between adaptation to an aquatic lifestyle and the instability of more rounded shells, thought beneficial for self-righting. Trade-offs often result in compromises, this is particularly true when freshwater turtles, with flatter shells, must self-right to avoid the negative effects of inverting. These turtles, theoretically, invest more biomechanical effort to achieve successful and timely self-righting when compared to turtles with rounded carapaces. This increase in effort places these hatchlings in a precarious position; prone to inversion and predation and with shells seemingly maladapted to the act of self-righting. Here, we examine hatchling self-righting performance in three morphologically distinct freshwater turtle species (Apalone spinifera,Chelydra serpentinaandTrachemys scripta scripta) that inhabit similar environmental niches. We demonstrate that these hatchlings were capable of rapid self-righting and used considerably less biomechanical effort relative to adult turtles. Despite differences in shell morphology the energetic efficiency of self-righting remained remarkably low and uniform between the three species. Our results confound theoretical predictions of self-righting ability based on shell shape metrics and indicate that other morphological characteristics like neck or tail morphology and shell material properties must be considered to better understand the biomechanical nuances of Testudine self-righting.
more »
« less
Self-Righting Shell for Robotic Hexapod
Decimeter scale robots in human environments are small relative to obstacles they encounter, making them prone to flipping over and needing to self-right. We present a multifaceted shell that by its geometry alone enables the hexapedal robot MediumANT to passively self-right without the need for additional sensory feedback.We designed the shell by specifying the cross-sectional geometry in the yz and xy planes such that the robot returns to an upright position by rolling around the longitudinal (x) axis, and then tweaked the design to reduce the number of faces. We then attached the shell to the robot by modifying some of its chassis structural plates to extend to and support the shell. We evaluated the effectiveness of the shell in two experimental scenarios: passive righting – balancing the robot on each face of the shell before releasing the robot – and an intentional fall – walking the robot off a ledge at various approach angles. As intended by our design, the robot recovered the upright orientation from all starting faces in the passive righting test and righted itself and continued walking in all falling trials. This work presents an example of using biologically inspired simplicity to solve what would otherwise be a technically challenging problem.
more »
« less
- Award ID(s):
- 2038432
- PAR ID:
- 10549315
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-8457-4
- Page Range / eLocation ID:
- 1436 to 1442
- Subject(s) / Keyword(s):
- self-righting multi-legged robot
- Format(s):
- Medium: X
- Location:
- Yokohama, Japan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent observations of wingless animals, including jumping nematodes, springtails, insects, and wingless vertebrates like geckos, snakes, and salamanders, have shown that their adaptations and body morphing are essential for rapid self-righting and controlled landing. These skills can reduce the risk of physical damage during collision, minimize recoil during landing, and allow for a quick escape response to minimize predation risk. The size, mass distribution, and speed of an animal determine its self-righting method, with larger animals depending on the conservation of angular momentum and smaller animals primarily using aerodynamic forces. Many animals falling through the air, from nematodes to salamanders, adopt a skydiving posture while descending. Similarly, plant seeds such as dandelions and samaras are able to turn upright in mid-air using aerodynamic forces and produce high decelerations. These aerial capabilities allow for a wide dispersal range, low-impact collisions, and effective landing and settling. Recently, small robots that can right themselves for controlled landings have been designed based on principles of aerial maneuvering in animals. Further research into the effects of unsteady flows on self-righting and landing in small arthropods, particularly those exhibiting explosive catapulting, could reveal how morphological features, flow dynamics, and physical mechanisms contribute to effective mid-air control. More broadly, studying apterygote (wingless insects) landing could also provide insight into the origin of insect flight. These research efforts have the potential to lead to the bio-inspired design of aerial micro-vehicles, sports projectiles, parachutes, and impulsive robots that can land upright in unsteady flow conditions.more » « less
-
Miniaturizing legged robot platforms is challenging due to hardware limitations that constrain the number, power density, and precision of actuators at that size. By leveraging design principles of quasi-passive walking robots at any scale, stable locomotion and steering can be achieved with simple mechanisms and open-loop control. Here, we present the design and control of "Zippy", the smallest self-contained bipedal walking robot at only 3.6 cm tall. Zippy has rounded feet, a single motor without feedback control, and is capable of turning, skipping, and ascending steps. At its fastest pace, the robot achieves a forward walking speed of 25 cm/s, which is10 leg lengths per second, the fastest biped robot of any size by that metric. This work explores the design and performance of the robot and compares it to similar dynamic walking robots at larger scales.more » « less
-
Miniaturizing legged robot platforms is challenging due to hardware limitations that constrain the number, power density, and precision of actuators at that size. By leveraging design principles of quasi-passive walking robots at any scale, stable locomotion and steering can be achieved with simple mechanisms and open-loop control. Here, we present the design and control of “Zippy”, the smallest self-contained bipedal walking robot at only 3.6 cm tall. Zippy has rounded feet, a single motor without feedback control, and is capable of turning, skipping, and ascending steps. At its fastest pace, the robot achieves a forward walking speed of 25 cm/s, which is10 leg lengths per second, the fastest biped robot of any size by that metric. This work explores the design and performance of the robot and compares it to similar dynamic walking robots at larger scales.more » « less
-
Abstract Armoured, rigid bodied animals, such as Testudines, must self-right should they find themselves in an inverted position. The ability to self-right is an essential biomechanical and physiological process that influences survival and ultimately fitness. Traits that enhance righting ability may consequently offer an evolutionary advantage. However, the energetic requirements of self-righting are unknown. Using respirometry and kinematic video analysis, we examined the metabolic cost of self-righting in the terrestrial Mediterranean spur-thighed tortoise and compared this to the metabolic cost of locomotion at a moderate, easily sustainable speed. We found that self-righting is, relatively, metabolically expensive and costs around two times the mass-specific power required to walk. Rapid movements of the limbs and head facilitate successful righting however, combined with the constraints of breathing whilst upside down, contribute a significant metabolic cost. Consequently, in the wild, these animals should favour environments or behaviours where the risk of becoming inverted is reduced.more » « less
An official website of the United States government

