skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: No Evidence of Winter Warming in Eurasia Following Large, Low-Latitude Volcanic Eruptions during the Last Millennium
Abstract We critically reexamine the question of whether volcanic eruptions cause surface warming over Eurasia in winter, in the light of recent modeling studies that have suggested internal variability may overwhelm any forced volcanic response, even for the very largest eruptions during the Common Era. Focusing on the last millennium, we combine model output, instrumental observations, tree-ring records, and ice cores to build a new temperature reconstruction that specifically targets the boreal winter season. We focus on 20 eruptions over the last millennium with volcanic stratospheric sulfur injections (VSSIs) larger than the 1991 Pinatubo eruption. We find that only 7 of these 20 large events are followed by warm surface temperature anomalies over Eurasia in the first posteruption winter. Examining the 13 events that show cold posteruption anomalies, we find no correlation between the amplitude of winter cooling and VSSI mass. We also find no evidence that the North Atlantic Oscillation is correlated with VSSI in winter, a key element of the proposed mechanism through which large, low-latitude eruptions might cause winter warming over Eurasia. Furthermore, by inspecting individual eruptions rather than combining events into a superposed epoch analysis, we are able to reconcile our findings with those of previous studies. Analysis of two additional paleoclimatic datasets corroborates the lack of posteruption Eurasian winter warming. Our findings, covering the entire last millennium, confirm the findings of most recent modeling studies and offer important new evidence that large, low-latitude eruptions are not, in general, followed by significant surface wintertime warming over Eurasia.  more » « less
Award ID(s):
1743738 2303353 2303352
PAR ID:
10549317
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
37
Issue:
21
ISSN:
0894-8755
Format(s):
Medium: X Size: p. 5653-5673
Size(s):
p. 5653-5673
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. It has been suggested that increased stratospheric sulfate aerosol loadings following large, low latitude volcanic eruptions can lead to wintertime warming over Eurasia through dynamical stratosphere–troposphere coupling. We here investigate the proposedconnection in the context of hypothetical future stratospheric sulfategeoengineering in the Geoengineering Large Ensemble simulations. In thosegeoengineering simulations, we find that stratospheric circulation anomalies that resemble the positive phase of the Northern Annular Mode in winter are a distinguishing climate response which is absent when increasing greenhouse gases alone are prescribed. This stratospheric dynamical response projects onto the positive phase of the North Atlantic Oscillation, leading to associated side effects of this climate intervention strategy, such as continental Eurasian warming and precipitation changes. Seasonality is a key signature of the dynamically driven surface response. We find an opposite response of the North Atlantic Oscillation in summer, when no dynamical role of the stratosphere is expected. The robustness of the wintertime forced response stands in contrast to previously proposed volcanic responses. 
    more » « less
  2. null (Ed.)
    Large tropical volcanic eruptions can affect the climate of many regions on Earth, yet it is uncertain how the largest eruptions over the past millennium may have altered Earth’s hydroclimate. Here, we analyze the global hydroclimatic response to all the tropical volcanic eruptions over the past millennium that were larger than the Mount Pinatubo eruption of 1991. Using the Paleo Hydrodynamics Data Assimilation product (PHYDA), we find that these large volcanic eruptions tended to produce dry conditions over tropical Africa, Central Asia and the Middle East and wet conditions over much of Oceania and the South American monsoon region. These anomalies are statistically significant, and they persisted for more than a decade in some regions. The persistence of the anomalies is associated with southward shifts in the Intertropical Convergence Zone and sea surface temperature changes in the Pacific and Atlantic oceans. We compare the PHYDA results with the stand-alone model response of the Community Earth System Model (CESM)-Last Millennium Ensemble. We find that the proxy-constrained PHYDA estimates are larger and more persistent than the responses simulated by CESM. Understanding which of these estimates is more realistic is critical for accurately characterizing the hydroclimate risks of future volcanic eruptions. 
    more » « less
  3. Abstract Drylands are highly vulnerable to climate change due to their fragile ecosystems and limited ability to adapt. In contrast to the global drying after tropical volcanic eruptions shown previously, we demonstrate that large tropical volcanic eruptions can induce significant two-year hydroclimatic wetting over drylands by employing the last millennium simulations. During this wetting period, which extends from the first to the third boreal winter after the eruption, several hydroclimatic indicators, such as self-calibrating Palmer Drought Severity Index based on the Penman-Monteith equation for potential evapotranspiration (scPDSIpm), standard precipitation evapotranspiration index (SPEI), aridity index (AI), top-10cm soil moisture (SM10cm), and leaf area index (LAI), show significant positive anomalies over most drylands. The primary contribution to the wetting response is the potential evapotranspiration (PET) reduction resulting from dryland surface cooling and reduced solar radiation, as well as a weak contribution from increased precipitation. The latter is due to the wind convergence into drylands caused by slower tropical cooling compared to drylands. The wetting response of drylands to volcanic eruptions also demonstrates some benefits over the global hydrological slowdown resulting from stratospheric aerosol injection, which replicates the cooling effects of volcanic eruptions to address global warming. 
    more » « less
  4. Abstract Large volcanic eruptions are one of the dominant perturbations to global and regional atmospheric temperatures on timescales of years to decades. Discrepancies remain, however, in the estimated magnitude and persistence of the surface temperature cooling caused by volcanic eruptions, as characterized by paleoclimatic proxies and climate models. We investigate these discrepancies in the context of large tropical eruptions over the Last Millennium using two state‐of‐the‐art data assimilation products, the Paleo Hydrodynamics Data Assimilation product (PHYDA) and the Last Millennium Reanalysis (LMR), and simulations from the National Center for Atmospheric Research Community Earth System Model‐Last Millennium Ensemble (NCAR CESM‐LME). We find that PHYDA and LMR estimate mean global and hemispheric cooling that is similar in magnitude and persistence once effects from eruptions occurring in short succession are removed. The estimates also compare well to Northern‐Hemisphere reconstructions based solely or partially on tree‐ring density, which have been proposed as the most accurate proxy estimates of surface cooling due to volcanism. All proxy‐based estimates also agree well with the magnitude of the mean cooling simulated by the CESM‐LME. Differences remain, however, in the spatial patterns of the temperature responses in the PHYDA, LMR, and the CESM‐LME. The duration of cooling anomalies also persists for several years longer in the PHYDA and LMR relative to the CESM‐LME. Our results demonstrate progress in resolving discrepancies between proxy‐ and model‐based estimates of temperature responses to volcanism, but also indicate these estimates must be further reconciled to better characterize the risks of future volcanic eruptions. 
    more » « less
  5. Abstract. Climate variability in the last millennium (past 1000 years) is dominated by the effects of large-magnitude volcanic eruptions; however, a long-standing mismatch exists between model-simulated and tree-ring-derived surface cooling. Accounting for the self-limiting effects of large sulfur dioxide (SO2) injections and the limitations in tree-ring records, such as lagged responses due to biological memory, reconciles some of the discrepancy, but uncertainties remain, particularly for the largest tropical eruptions. The representation of volcanic forcing in the latest generation of climate models has improved significantly, but most models prescribe the aerosol optical properties rather than using SO2 emissions directly and including interactions between the aerosol, chemistry, and dynamics. Here, we use the UK Earth System Model (UKESM) to simulate the climate of the last millennium (1250–1850 CE) using volcanic SO2 emissions. Averaged across all large-magnitude eruptions, we find similar Northern Hemisphere (NH) summer cooling compared with other last-millennium climate simulations from the Paleoclimate Modelling Intercomparison Project Phase 4 (PMIP4), run with both SO2 emissions and prescribed forcing, and a continued overestimation of surface cooling compared with tree-ring reconstructions. However, for the largest-magnitude tropical eruptions in 1257 (Mt. Samalas) and 1815 (Mt. Tambora), some models, including UKESM1, suggest a smaller NH summer cooling that is in better agreement with tree-ring records. In UKESM1, we find that the simulated volcanic forcing differs considerably from the PMIP4 dataset used in models without interactive aerosol schemes, with marked differences in the hemispheric spread of the aerosol, resulting in lower forcing in the NH when SO2 emissions are used. Our results suggest that, for the largest tropical eruptions, the spatial distribution of aerosol can account for some of the discrepancies between model-simulated and tree-ring-derived cooling. Further work should therefore focus on better resolving the spatial distribution of aerosol forcing for past eruptions. 
    more » « less