Cubic boron nitride (cBN) is a relatively less studied wide bandgap semiconductor despite its many promising mechanical, thermal, and electronic properties. We report on the electronic, structural, and optical characterization of commercial cBN crystal platelets. Temperature dependent transport measurements revealed the charge limited diode behavior of the cBN crystals. The equilibrium Fermi level was determined to be 0.47 eV below the conduction band, and the electron conduction was identified as n-type. Unirradiated dark and amber colored cBN crystals displayed broad photoluminescence emission peaks centered around different wavelengths. RC series zero phonon line defect emission peaks were observed at room temperature from the electron beam irradiated and oxygen ion implanted cBN crystals, making this material a promising candidate for high power microwave devices, next generation power electronics, and future quantum sensing applications.
more »
« less
Atomic-like UV emission generated in hexagonal boron nitride single crystals by thermal annealing
A series of atomic-like photoluminescence (PL) emission peaks in UV region near 4.0 eV were created by thermal annealing hexagonal boron nitride (h-BN) single crystals in air. The pristine h-BN did not have these peaks, emitting strong phonon-assisted band edge PL with peaks at 5.78 and 5.89 eV. After annealing the h-BN crystals in ambient air, a new atomic-like sharp emission in UV region at 4.09 eV with a line width of 0.2 nm appeared along with its phonon replicas at 3.89 and 3.69 eV in the low temperature (8 K) PL measurement. Further testing demonstrated that annealing the h-BN samples in the temperature window of 700–950 °C for 60 min generated the atomic-like emission. The peak position of the emission line is stable with the temperature and PL excitation power. Our study also suggests that the defect responsible for the atomic-like emission resides in the surface region.
more »
« less
- Award ID(s):
- 2117286
- PAR ID:
- 10549322
- Publisher / Repository:
- Elsevier-ScienceDirect
- Date Published:
- Journal Name:
- Journal of Luminescence
- Volume:
- 275
- Issue:
- C
- ISSN:
- 0022-2313
- Page Range / eLocation ID:
- 120756
- Subject(s) / Keyword(s):
- Hexagonal boron nitride (h-BN) Atomic-like emission Deep UV photoluminescence (PL)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Photoluminescence (PL) spectroscopy has been used to study the defect levels in thin film copper indium diselenide (CuInSe2, CIS) which we are developing as the absorber layer for the bottom cell of a monolithically grown perovskite/CuInSe2 tandem solar cell. Temperature and laser power dependent PL measurements of thin film CIS for two different Cu/In ratios (0.66 and 0.80) have been performed. The CIS film with Cu/In = 0.80 shows a prominent donor-to-acceptor peak (DAP) involving a shallow acceptor of binding energy ~22 meV, with phonon replica at ~32 meV spacing. In contrast, PL measurement of CIS film for Cu/In = 0.66 taken at 20 K exhibited an asymmetric and broad PL spectrum with peaks at 0.845 eV and 0.787 eV. Laser intensity dependent PL revealed that the observed peaks 0.845 eV and 0.787 eV shift towards higher energy (aka j-shift) at ~11.7 meV/decade and ~ 8 meV/decade with increase in laser intensity respectively. The asymmetric and broad spectrum together with large j-shift suggests that the observed peaks at 0.845 eV and 0.787 eV were related to band to-tail (BT) and band-to-impurity (BI) transition, respectively. Such a band-tail-related transition originates from the potential fluctuation of defect states at low temperature. The appearance of band related transition in CIS film with Cu/In = 0.66 is the indicator of the presence of large number of charged defect states.more » « less
-
Two-dimensional (2D) hexagonal boron nitride (h-BN) is one of the few materials showing great promise for light emission in the far ultraviolet (UV)-C wavelength, which is more effective and safer in containing the transmission of microbial diseases than traditional UV light. In this report, we observed that h-BN, despite having an indirect energy bandgap, exhibits a remarkably high room-temperature quantum efficiency (∼60%), which is orders of magnitude higher than that of other indirect bandgap material, and is enabled by strong excitonic effects and efficient exciton-phonon interactions. This study offers a new approach for the design and development of far UV-C optoelectronic devices as well as quantum photonic devices employing 2D semiconductor active regions.more » « less
-
Intrinsic defects and their concentrations in hexagonal boron nitride (h‐BN) play a key role in single‐photon emission. In this study, the optical properties of large‐area multilayer h‐BN‐on‐sapphire grown by metal‐organic chemical vapor deposition are explored. Based on the detailed spectroscopic characterization using both cathodoluminescence (CL) and photoluminescence (PL) measurements, the material is devoid of random single‐point defects instead of a few clustered complex defects. The emission spectra of the measurements confirm a record‐low‐defect concentration of ≈104 cm−2. Post‐annealing, no significant changes are observed in the measured spectra and the defect concentrations remain unaltered. Through CL and PL spectroscopy, an optically active boron vacancy spin defect is identified and a novel complex defect combination arising from carbon impurities is revealed. This complex defect, previously unreported, signifies a unique aspect of the material. In these findings, the understanding of defect‐induced optical properties in h‐BN films is contributed, providing insights for potential applications in quantum information science.more » « less
-
Despite its importance, a sophisticated theoretical study of thermal conductivity in bulk h-BN has been lacking to date. In this study, we predict thermal conductivity in bulk h-BN crystals using first-principles predictions and the Boltzmann transport equation. We consider three-phonon (3ph) scattering, four-phonon (4ph) scattering, and phonon renormalization. Our predicted thermal conductivity is 363 and 4.88 W/(m K) for the in-plane and out-of-plane directions at room temperature, respectively. Further analysis reveals that 4ph scattering reduces thermal conductivity, while phonon renormalization weakens phonon anharmonicity and increases thermal conductivity. Eventually, the in-plane and out-of-plane thermal conductivities show intriguing ∼T−0.627 and ∼T−0.568 dependencies, respectively, far deviating from the traditional 1/T relation.more » « less
An official website of the United States government
