skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Double emulsion microencapsulation of ionic liquids for carbon capture
Microencapsulation of pristine core liquids in polymer shells has critical applications in thermal energy storage and management, targeted drug delivery, and carbon capture, among others. Herein, we report a novel encapsulation approach based on a double emulsion soft-template to produce microcapsules comprised of an ionic liquid (IL) core in a degradable polymer shell. We demonstrate the production of [IL-in-oil1]-in-oil2 (IL/O1/O2) double emulsions, in which the oil interphase (O1) contains a CO2-derived polycarbonate bearing vinyl pendant groups, tetrathiol small molecule crosslinker, and photoinitiator; upon irradiation of the double emulsion under low shear, thiol–ene crosslinking of the loaded species results in the formation of a robust shell around the pure IL droplets. The core–shell structures have enhanced physisorption for CO2 uptake compared to the bulk IL, which is consistent with the combined capacity of the IL/shell alone and demonstrates more rapid uptake due to an enhanced gas–liquid interface. This approach to microencapsulation of functional liquids offers researchers a distinct route to fabricate composite architectures with a pristine core for applications in separations, transport of cargo, and gas uptake.  more » « less
Award ID(s):
2103182
PAR ID:
10549334
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Materials Horizons
ISSN:
2051-6347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microcapsules allow for the controlled containment, transport, and release of cargoes ranging from pharmaceuticals to fragrances. Given the interest from a variety of industries in microcapsules and other core–shell structures, a multitude of fabrication strategies exist. Here, we report on a method relying on a mixture of temperature-responsive microgel particles, poly( N -isopropylacrylamide) (pNIPAM), and a polymer which undergo fluid–fluid phase separation. At room temperature this mixture separates into colloid-rich (liquid) and colloid-poor (gas) fluids. By heating the sample above a critical temperature where the microgel particles shrink dramatically and develop a more deeply attractive interparticle potential, the droplets of the colloid-rich phase become gel-like. As the temperature is lowered back to room temperature, these droplets of gelled colloidal particles reliquefy and phase separation within the droplet occurs. This phase separation leads to colloid-poor droplets within the colloid-rich droplets surrounded by a continuous colloid-poor phase. The gas/liquid/gas all-aqueous double emulsion lasts only a few minutes before a majority of the inner droplets escape. However, the colloid-rich shell of the core–shell droplets can solidify with the addition of salt. That this method creates core–shell structures with a shell composed of stimuli-sensitive microgel colloidal particles using only aqueous components makes it attractive for encapsulating biological materials and making capsules that respond to changes in, for example, temperature, salt concentration, or pH. 
    more » « less
  2. Liquid emulsion droplet evaporation is of importance for various sensing and imaging applications. The liquid-to-gas phase transformation is typically triggered thermally or acoustically by low–boiling point liquids, or by inclusion of solid structures that pin the vapor/liquid contact line to facilitate heterogeneous nucleation. However, these approaches lack precise tunability in vaporization behavior. Here, we describe a previously unused approach to control vaporization behavior through an endoskeleton that can melt and blend into the liquid core to either enhance or disrupt cohesive intermolecular forces. This effect is demonstrated using perfluoropentane (C 5 F 12 ) droplets encapsulating a fluorocarbon (FC) or hydrocarbon (HC) endoskeleton. FC skeletons inhibit vaporization, whereas HC skeletons trigger vaporization near the rotator melting transition. Our findings highlight the importance of skeletal interfacial mixing for initiating droplet vaporization. Tuning molecular interactions between the endoskeleton and droplet phase is generalizable for achieving emulsion or other secondary phase transitions, in emulsions. 
    more » « less
  3. While ionic liquids (ILs) have attracted much attention as potential next-generation lubricant additives, their implementation in oil formulations has been hindered by their limited solubility in hydrocarbon fluids and corrosivity. Here, we encapsulate an oil-insoluble IL that has been studied in lubrication science, namely 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([HMIM][TFSI]), within poly(ethylene glycol dimethacrylate-buytl methacrylate copolymer) (poly(EGDM-c-BMA)) microshells using a mini-emulsion polymerization process. The synthesized poly(EGDM-c-BMA)-encapsulated [HMIM][TFSI] microparticles are shown to be dispersible in a non-polar, synthetic oil (i.e., poly-α-olefin). Tribological experiments indicated that the microcapsules act as an additive reservoir that reduces friction by releasing the encapsulated IL at the sliding interface following the mechanical rupture of the polymer shell. X-ray photoelectron spectroscopy (XPS) measurements provided evidence that [HMIM][TFSI] does not tribochemically react on steel surfaces to create a reaction layer, thus suggesting that this IL reduces friction by generating a solid-like, layered structure upon nanoconfinement at sliding asperities, as proposed by previous nanoscale studies. The results of this work do not only provide new insights into the lubrication mechanism of ILs when used as additives in base oils in general, but also establish a new, broadly-applicable framework based on polymer encapsulation for utilizing ILs or other compounds with limited solubility as additives for oil formulations. 
    more » « less
  4. Integrating transducer/sensing materials into microfluidic platforms has enhanced gas sensors′ sensitivity, selectivity, and response time while facilitating miniaturization. In this manuscript, microfluidics has been integrated with non-planar microelectrode array and functionalized ionic liquids (ILs) to develop a novel miniaturized electrochemical gas sensor architecture. The sensor employs the IL 1-ethyl-3-methylimidazolium 2-cyanopyrolide ([EMIM][2-CNpyr]) as the electrolyte and capture molecule for detecting carbon dioxide (CO 2 ). The three-layer architecture of the sensor consists of a microchannel with the IL sandwiched between glass slides containing microelectrode arrays, forming a non-planar structure. This design facilitates electric field penetration through the IL, capturing CO 2 binding perturbations throughout the channel volume to enhance sensitivity. CO 2 binding with [EMIM][2-CNpyr] generates carboxylate ([EMIM] + -CO2 − ]), carbamate ([2-CNpyr]-CO2 − ]), and pyrrole-2-carbonitrile (2-CNpyrH) species, significantly decreasing the conductivity. The viscosity is also increased, leading to a further decrease in conductivity. These cumulative effects increase charge transfer resistance in the impedance spectrum, allowing a linear calibration curve obtained using Langmuir Isotherm. The sensitivity and reproducibility in CO 2 detection are demonstrated by two electrode configurations using the calibration curve. The developed sensor offers a versatile platform for future applications. 
    more » « less
  5. Fibers are valuable to biomedical applications. Used as sutures or meshes, there is an increased dual need to provide functionality such as drug delivery. Porosity represents a high surface area to volume architecture. Coaxial fibers with porous and non-porous layers offer a new design framework for fiber design that can resolve dual needs of mechanical robustness with transport phenomena. Using preferential solubility of a polymer in supercritical CO2, we develop a new architecture using biocompatible polymers based on porous core-sheath fiber fabrication technique. Polycaprolactone was selected as the CO2 miscible phase and Poly(butyrate adipate terephthalate)(PBAT) as the immiscible phase. The mechanical performance of the fibers was investigated using quasi static and dynamic loading. SEM images indicate no physical detachment of the two polymer surface after CO2 exposure indicating a successful amalgamation of polymers at the boundary of core and sheath. PCL as a sheath and as a core showed an increase of 650% and 468% in tensile strength compared to pristine PCL and PBAT. Introduction of porosity on the surface of coaxial fiber fPCL(cPBAT) further enhanced the yield strength increases by 40%. Dynamic mechanical analysis was used to analyze the viscoelastic properties of the fibers. The storage and loss modulus for coaxial fibers shows superior modulus throughout the glassy, glass transition and rubbery region as compared to the pristine PCL and PBAT, showing enhancement in both the elastic and viscous response of the material. The results indicate a new approach that is free of volatile organic solvents to manipulate the architecture of the cross-section of the electrospun fiber and tailor mechanical properties to the required application. 
    more » « less