skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the Interplay of Metacognition, Affect, and Behaviors in an Introductory Computer Science Course for Non-Majors
Introductory computer science for non-majors, often referred to as CS0, is a course that is designed to be more accessible and less intimidating than CS1, with the goal of alleviating barriers and fears associated with learning computer science (CS). However, despite this intention, many students still struggle in CS0 and these courses do not always successfully prepare students for future CS learning experiences. In this paper, we study the experiences of CS0 students with a particular focus on the intersection of their metacognition, affect, and behaviors. To study students’ daily learning experiences, we collected data from 20 participants who completed structured daily diaries and retrospective interviews over the course of a single homework assignment. Through a thematic analysis of the diaries and interviews, we identified three distinct patterns of engagement that highlight the importance of metacognitive knowledge of strategies, or a students’ understanding of when, why, and how to effectively use regulation and disciplinary strategies while working on tasks. The three patterns of engagement include: (1) avoidance behaviors resulting from negative emotions, negative judgements, and a lack of metacognitive knowledge of strategies, (2) persistence or re-engagement behaviors despite negative emotions and judgements aided by metacognitive knowledge of strategies, and (3) persistence behaviors with evidence that metacognitive knowledge of strategies prevented students from forming negative judgements in the first place. We contribute an initial model of the interplay of metacognition, affect, and behaviors in CS learning, showing the role of metacognitive knowledge of strategies in helping students persist in the face of struggle. In our discussion, we advocate for explicit interventions that support students in developing metacognitive knowledge of strategies while also supporting their sometimes challenging emotional experiences.  more » « less
Award ID(s):
2016900
PAR ID:
10549632
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400704758
Page Range / eLocation ID:
27 to 41
Format(s):
Medium: X
Location:
Melbourne VIC Australia
Sponsoring Org:
National Science Foundation
More Like this
  1. In computer science (CS) higher education, many students in introductory courses (CS1) struggle to learn programming due to both the complexity of the discipline and negative affective experiences while learning. Large class sizes hinder the opportunity to receive support that addresses both disciplinary knowledge and affective experiences, both of which have been shown to influence self-efficacy. Our work utilized a combination of structured daily diaries and retrospective interviews to surface participants’ programming experiences, affective responses, and self-perceptions. Through two case studies, we highlight the intertwined nature of disciplinary knowledge and affective experiences in the learning process of students in CS1, and advocate for increased attention to student interactions with TAs as an opportunity to provide affective support along with disciplinary learning. 
    more » « less
  2. Introductory computer science courses for non-majors (CS0) aim to increase diversity and highlight the relevance of computing across disciplines. To enhance the accessibility and engagement of CS0, researchers have explored contextualized computing, where computing is integrated with another subject, to teach course content. While research has explored various designs for contextualized courses, we know less about how contextualized computing tasks impact students’ learning experiences. Through the lens of metacognition and affect, we conducted a secondary qualitative analysis on daily diary and retrospective interview data from 20 students in a CS0 course that applied coding to different contexts. Our findings demonstrate that students’ feeling of knowing and their perception of the task are two central themes that shape their affect and interest in the course. We conclude with design suggestions for contextualized computing in CS0 to better support students. 
    more » « less
  3. null (Ed.)
    Metacognition is awareness and control of thinking for learning. Strong metacognitive skills have the power to impact student learning and performance. While metacognition can develop over time with practice, many students struggle to meaningfully engage in metacognitive processes. In an evidence-based teaching guide associated with this paper ( https://lse.ascb.org/evidence-based-teaching-guides/student-metacognition ), we outline the reasons metacognition is critical for learning and summarize relevant research on this topic. We focus on three main areas in which faculty can foster students’ metacognition: supporting student learning strategies (i.e., study skills), encouraging monitoring and control of learning, and promoting social metacognition during group work. We distill insights from key papers into general recommendations for instruction, as well as a special list of four recommendations that instructors can implement in any course. We encourage both instructors and researchers to target metacognition to help students improve their learning and performance. 
    more » « less
  4. Wright, L Kate (Ed.)
    ABSTRACT Students with strong metacognitive skills are positioned to learn and achieve more than peers who are still developing their metacognition. Yet, many students come to college without well-developed metacognitive skills. As part of a longitudinal study on metacognitive development, we asked when, why, and how first-year life science majors use metacognitive skills of planning, monitoring, and evaluating. Guided by the metacognition framework, we collected data from 52 undergraduates at three institutions using semi-structured interviews. We found that first-year students seek study recommendations from instructors, peers, and online resources when they plan their study strategies. First-year students struggle to accurately monitor their understanding and benefit when instructors help them confront what they do not yet know. First-year students evaluate the effectiveness of their study plans at two specific points: immediately after taking an exam and/or after receiving their grade on an exam. While first-year students may be particularly open to suggestions on how to learn, they may need help debunking myths about learning. First-year students acknowledge they are still learning to monitor and welcome formative assessments that help them improve the accuracy of their monitoring. First-year students may be primed to receive guidance on their metacognition at the points when they are most likely to evaluate the effectiveness of their study strategies and plans. Based on our results, we offer suggestions for instructors who want to support first-year students to further develop their metacognition. 
    more » « less
  5. One of the key knowledge areas in Computer Science (CS) is Digital Logic and Computer Architecture where the learning outcome is an understanding of Boolean algebra, logic gates, registers, or arithmetic logic units, etc. and explaining how software and hardware are related to a computing system. Experimental Centric based Instructional Pedagogy (ECP) with portable laboratory instrumentation might provide real hands-on experience to obtain a practical understanding of those concepts at a lower cost compared with virtual hands-on laboratories that lack direct interaction with real apparatus or no integration of labs in the course. This work presents the initial adaptation of ECP to introduce the fundamentals of digital logic concepts in a Computer Architecture course in Spring 2022 for the first time in a CS department at a university teaching such courses without a lab and serving predominantly minority students. To establish a conducive and dynamic classroom environment by discovering course content through exploration, students majoring in CS were introduced to several logic gate types, worked with breadboards to connect circuits, and carried out operations to produce the necessary output using the commercial ADALM 1K Active Learning Module. To evaluate the impact of the ECP on students; performance in the class, three different evaluation methods were used, such as classroom observation, a signature assignment, and a Motivated Strategies for Learning Questionnaire (MSLQ) survey. The Classroom Observation Protocol for Undergraduate STEM (COPUS) findings indicated greater student engagement when ECP is used; the Signature assignment results indicated improved learning outcomes for students; and the MLSQ survey, which measures students; motivation, critical thinking, curiosity, collaboration, and metacognition, determined a positive impact of the ECP on the CS participants. 
    more » « less