Abstract In the last decade, organ-on-a-chip technology has been researched as an alternative to animal and cell culture models (Buhidma et al. in NPJ Parkinson’s Dis, 2020; Pearce et al. in Eur Cells Mater 13:1–10, 2007; Huh et al. in Nat Protoc 8:2135–2157, 2013). While extensive research has focused on the biological functions of these chips, there has been limited exploration of functional materials that can accurately replicate the biological environment. Our group concentrated on a lung-on-a-chip featuring a newly fabricated porous silicon bio-membrane. This bio-membrane mimics the interstitial space found between epithelial and endothelial cells in vivo, with a thickness of approximately 1 μm (Ingber in Cell 164:1105–1109, 2016). This study aims to establish a fabrication method for producing a thin, uniform porous silicon membrane with a predictablereduced modulus. We conducted mechanical and morphological characterization using scanning electron microscopy and nanoindentation. A small, parametric study was conducted to determine the reduced modulus of the porous silicon and how it may relate to the morphological features of the membrane. We compare our results to other works. Graphical Abstract
more »
« less
Real-time optical thickness determination for producing ultra-thin silicon membranes using anisotropic potassium hydroxide etching
Abstract Thinning silicon wafers via wet etching is a common practice in the microelectromechanical system (MEMS) industry to produce membranes and other structures Wang (Nano Lett 13(9): 4393–4398, 2013). Controlling the thickness of a membrane is a critical aspect to optimize the functionality of these devices. Our research specifically focuses on the production of bio-membranes for lung-on-a-chip (LoaC) applications. In our fabrication, it is crucial for us to determine the membranes’ thickness in a non-invasive way. This study aims to address this issue by attempting to develop a tool that uses the optical properties of light transmission through silicon to find a correlation with thickness. To find this correlation, we conducted a small experimental study where we fabricated ultra-thin membranes and captured images of the light transmission through these samples. This paper will report the correlation found between calculated average intensities of these images and measurements done using scanning electron microscopy (SEM). Graphical abstract
more »
« less
- Award ID(s):
- 1827847
- PAR ID:
- 10549654
- Publisher / Repository:
- Cambridge University Press (CUP)
- Date Published:
- Journal Name:
- MRS Advances
- Volume:
- 9
- Issue:
- 16
- ISSN:
- 2059-8521
- Format(s):
- Medium: X Size: p. 1292-1296
- Size(s):
- p. 1292-1296
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Neuropeptides are abundant signaling molecules in the central nervous system. Yet remarkably little is known about their spatiotemporal spread and biological activity. Here, we developed an integrated optical approach usingPlasmonic nAnovesicles and cell‐based neurotransmitter fluorescent engineered reporter (CNiFER), or PACE, to probe neuropeptide signaling in the mouse neocortex. Small volumes (fL to pL) of exogenously supplied somatostatin‐14 (SST) can be rapidly released under near‐infrared light stimulation from nanovesicles implanted in the brain and detected by SST2 CNiFERs with nM sensitivity. Our measurements reveal reduced but synchronized SST transmission within 130 μm, and markedly smaller and delayed transmission at longer distances. These measurements enabled a quantitative estimation of the SST loss rate due to peptide degradation and binding. PACE offers a new tool for determining the spatiotemporal scales of neuropeptide volume transmission and signaling in the brain.more » « less
-
Abstract Pit membranes between xylem vessels play a major role in angiosperm water transport. Yet, their three‐dimensional (3D) structure as fibrous porous media remains unknown, largely due to technical challenges and sample preparation artefacts. Here, we applied a modelling approach based on thickness measurements of fresh and fully shrunken pit membranes of seven species. Pore constrictions were also investigated visually by perfusing fresh material with colloidal gold particles of known sizes. Based on a shrinkage model, fresh pit membranes showed tiny pore constrictions of ca. 20 nm, but a very high porosity (i.e. pore volume fraction) of on average 0.81. Perfusion experiments showed similar pore constrictions in fresh samples, well below 50 nm based on transmission electron microscopy. Drying caused a 50% shrinkage of pit membranes, resulting in much smaller pore constrictions. These findings suggest that pit membranes represent a mesoporous medium, with the pore space characterized by multiple constrictions. Constrictions are much smaller than previously assumed, but the pore volume is large and highly interconnected. Pores do not form highly tortuous, bent, or zigzagging pathways. These insights provide a novel view on pit membranes, which is essential to develop a mechanistic, 3D understanding of air‐seeding through this porous medium.more » « less
-
Abstract A photocrosslinkable poly(N,N′‐diethylacrylamide) copolymer allows for the photolithographic fabrication of hydrogel sheets with nonuniform crosslinking density and swelling ratio. Using this material system, different 3D shapes with nonzero Gaussian curvatureKare successfully programmed by prescribing a “metric” defined by in‐plane variations in swelling. However, this methodology does not control the direction of buckling adopted by each positive K feature, and therefore cannot controllably select between different isometric shapes defined by a single metric. Here, by introducing gradients in swelling through the thickness of the gel sheet by tuning the absorption of the UV‐light used for crosslinking, a preferential buckling direction is locally specified for each feature by the direction of UV exposure. By also controlling the strength of coupling between neighboring features, this is shown to be an effective method to program buckling direction of each unit within a canonical corrugated surface shape.more » « less
-
Abstract The chemical dynamics of the elementary reaction of ground state atomic silicon (Si;3P) with germane (GeH4; X1A1) were unraveled in the gas phase under single collision condition at a collision energy of 11.8±0.3 kJ mol−1exploiting the crossed molecular beams technique contemplated with electronic structure calculations. The reaction follows indirect scattering dynamics and is initiated through an initial barrierless insertion of the silicon atom into one of the four chemically equivalent germanium‐hydrogen bonds forming a triplet collision complex (HSiGeH3;3i1). This intermediate underwent facile intersystem crossing (ISC) to the singlet surface (HSiGeH3;1i1). The latter isomerized via at least three hydrogen atom migrations involving exotic, hydrogen bridged reaction intermediates eventually leading to the H3SiGeH isomeri5. This intermediate could undergo unimolecular decomposition yielding the dibridged butterfly‐structured isomer1p1(Si(μ‐H2)Ge) plus molecular hydrogen through a tight exit transition state. Alternatively, up to two subsequent hydrogen shifts toi6andi7, followed by fragmentation of each of these intermediates, could also form1p1(Si(μ‐H2)Ge) along with molecular hydrogen. The overall non‐adiabatic reaction dynamics provide evidence on the existence of exotic dinuclear hydrides of main group XIV elements, whose carbon analog structures do not exist.more » « less
An official website of the United States government
