null
                            (Ed.)
                        
                    
            
                            Abstract We construct a $$(\mathfrak {gl}_2, B(\mathbb {Q}_p))$$ and Hecke-equivariant cup product pairing between overconvergent modular forms and the local cohomology at $$0$$ of a sheaf on $$\mathbb {P}^1$$ , landing in the compactly supported completed $$\mathbb {C}_p$$ -cohomology of the modular curve. The local cohomology group is a highest-weight Verma module, and the cup product is non-trivial on a highest-weight vector for any overconvergent modular form of infinitesimal weight not equal to $$1$$ . For classical weight $$k\geq 2$$ , the Verma has an algebraic quotient $$H^1(\mathbb {P}^1, \mathcal {O}(-k))$$ , and on classical forms, the pairing factors through this quotient, giving a geometric description of ‘half’ of the locally algebraic vectors in completed cohomology; the other half is described by a pairing with the roles of $H^1$ and $H^0$ reversed between the modular curve and $$\mathbb {P}^1$$ . Under minor assumptions, we deduce a conjecture of Gouvea on the Hodge-Tate-Sen weights of Galois representations attached to overconvergent modular forms. Our main results are essentially a strict subset of those obtained independently by Lue Pan, but the perspective here is different, and the proofs are short and use simple tools: a Mayer-Vietoris cover, a cup product, and a boundary map in group cohomology. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
