Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations. This problem is computationally complex, especially when dealing with large numbers of agents, as is common in realistic applications like autonomous vehicle coordination. Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential. Adding to the complexity, agents might act in a self-interested and strategic way, possibly misrepresenting their goals to the MAPF algorithm if it benefits them. Although the field of mechanism design offers tools to align incentives, using these tools without careful consideration can fail when only having access to approximately optimal outcomes. In this work, we introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms. We test our mechanisms on realistic MAPF domains with problem sizes ranging from dozens to hundreds of agents. We find that they improve welfare beyond a simple baseline. 
                        more » 
                        « less   
                    
                            
                            Automated Design of Affine Maximizer Mechanisms In Dynamic Settings
                        
                    
    
            Dynamic mechanism design is a challenging extension to ordinary mechanism design in which the mechanism designer must make a sequence of decisions over time in the face of possibly untruthful reports of participating agents. Optimizing dynamic mechanisms for welfare is relatively well understood. However, there has been less work on optimizing for other goals (e.g. revenue), and without restrictive assumptions on valuations, it is remarkably challenging to characterize good mechanisms. Instead, we turn to automated mechanism design to find mechanisms with good performance in specific problem instances.We extend the class of affine maximizer mechanisms to MDPs where agents may untruthfully report their rewards. This extension results in a challenging bilevel optimization problem in which the upper problem involves choosing optimal mechanism parameters, and the lower problem involves solving the resulting MDP. Our approach can find truthful dynamic mechanisms that achieve strong performance on goals other than welfare, and can be applied to essentially any problem setting—without restrictions on valuations—for which RL can learn optimal policies. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1901403
- PAR ID:
- 10549992
- Publisher / Repository:
- AAAI24
- Date Published:
- Format(s):
- Medium: X
- Location:
- Vancouver, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We consider information design in spatial resource competition, motivated by ride sharing platforms sharing information with drivers about rider demand. Each of N co-located agents (drivers) decides whether to move to another location with an uncertain and possibly higher resource level (rider demand), where the utility for moving increases in the resource level and decreases in the number of other agents that move. A principal who can observe the resource level wishes to share this information in a way that ensures a welfare-maximizing number of agents move. Analyzing the principal’s information design problem using the Bayesian persuasion framework, we study both private signaling mechanisms, where the principal sends personalized signals to each agent, and public signaling mechanisms, where the principal sends the same information to all agents. We show: 1) For private signaling, computing the optimal mechanism using the standard approach leads to a linear program with 2 N variables, rendering the computation challenging. We instead describe a computationally efficient two-step approach to finding the optimal private signaling mechanism. First, we perform a change of variables to solve a linear program with O(N^2) variables that provides the marginal probabilities of recommending each agent move. Second, we describe an efficient sampling procedure over sets of agents consistent with these optimal marginal probabilities; the optimal private mechanism then asks the sampled set of agents to move and the rest to stay. 2) For public signaling, we first show the welfare-maximizing equilibrium given any common belief has a threshold structure. Using this, we show that the optimal public mechanism with respect to the sender-preferred equilibrium can be computed in polynomial time. 3) We support our analytical results with numerical computations that show the optimal private and public signaling mechanisms achieve substantially higher social welfare when compared with no-information and full-information benchmarks.more » « less
- 
            We initiate the study of matching roommates and rooms wherein the preferences of agents over other agents and rooms are complementary and represented by Leontief utilities. In this setting, 2n agents must be paired up and assigned to n rooms. Each agent has cardinal valuations over the rooms as well as compatibility values over all other agents. Under Leontief preferences, an agent’s utility for a matching is the minimum of the two values. We focus on the tradeoff between maximizing utilitarian social welfare and strategyproofness. Our main result shows that—in a stark contrast to the additive case— under binary Leontief utilities, there exist strategyproof mechanisms that maximize the social welfare. We further devise a strategyproof mechanism that implements such a welfare maximizing algorithm and is parameterized by the number of agents. Along the way, we highlight several possibility and impossibility results, and give upper bounds and lower bounds for welfare with or without strategyproofness.more » « less
- 
            We study the fair and efficient allocation of a set of indivisible goods among agents, where each good has several copies, and each agent has an additively separable concave valuation function with a threshold. These valuations capture the property of diminishing marginal returns, and they are more general than the well-studied case of additive valuations. We present a polynomial-time algorithm that approximates the optimal Nash social welfare (NSW) up to a factor of e1/e ≈ 1.445. This matches with the state-of-the-art approximation factor for additive valuations. The computed allocation also satisfies the popular fairness guarantee of envy-freeness up to one good (EF1) up to a factor of 2 + ε. For instances without thresholds, it is also approximately Pareto-optimal. For instances satisfying a large market property, we show an improved approximation factor. Lastly, we show that the upper bounds on the optimal NSW introduced in Cole and Gkatzelis (2018) and Barman et al. (2018) have the same value.more » « less
- 
            Bonneau, Joseph; Weinberg, S Matthew (Ed.)In a typical decentralized autonomous organization (DAO), people organize themselves into a group that is programmatically managed. DAOs can act as bidders in auctions (with ConstitutionDAO being one notable example), with a DAO’s bid typically treated by the auctioneer as if it had been submitted by an individual, without regard to any details of the internal DAO dynamics. The goal of this paper is to study auctions in which the bidders are DAOs. More precisely, we consider the design of two-level auctions in which the "participants" are groups of bidders rather than individuals. Bidders form DAOs to pool resources, but must then also negotiate the terms by which the DAO’s winnings are shared. We model the outcome of a DAO’s negotiations through an aggregation function (which aggregates DAO members' bids into a single group bid) and a budget-balanced cost-sharing mechanism (that determines DAO members' access to the DAO’s allocation and distributes the aggregate payment demanded from the DAO to its members). DAOs' bids are processed by a direct-revelation mechanism that has no knowledge of the DAO structure (and thus treats each DAO as an individual). Within this framework, we pursue two-level mechanisms that are incentive-compatible (with truthful bidding a dominant strategy for each member of each DAO) and approximately welfare-optimal. We prove that, even in the case of a single-item auction, the DAO dynamics hidden from the outer mechanism preclude incentive-compatible welfare maximization: No matter what the outer mechanism and the cost-sharing mechanisms used by DAOs, the welfare of the resulting two-level mechanism can be a ≈ ln n factor less than the optimal welfare (in the worst case over DAOs and valuation profiles). We complement this lower bound with a natural two-level mechanism that achieves a matching approximate welfare guarantee. This upper bound also extends to multi-item auctions in which individuals have additive valuations. Finally, we show that our positive results cannot be extended much further: Even in multi-item settings in which bidders have unit-demand valuations, truthful two-level mechanisms form a highly restricted class and as a consequence cannot guarantee any non-trivial approximation of the maximum social welfare.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    