Abstract Synoptic eddies embedded in a westerly flow undergo downstream developments due to their dispersive nature. This paper examines the finite-amplitude aspects of downstream development with the budget of local wave activity (LWA), including explicit contributions from diabatic heating. LWA captures well individual troughs/ridges and the wave packet, and its column budget affords simplified interpretations. In the LWA framework, (linear) downstream development demonstrated in previous analyses is represented by the LWA advection by the zonal reference flow plus LWA flux induced by the radiation of Rossby waves. In addition, convergence of nonlinear advective LWA flux, baroclinic sources at the lower boundary, meridional redistribution by eddy momentum flux, and diabatic sources and sinks complete the column budget of LWA. When applied to the life cycles of troughs within coherent wave packets in the Southern Hemisphere, the LWA budget reveals that individual troughs grow mainly through downstream development, convergence of nonlinear advective flux by eddies, and diabatic heating. Downstream development and divergence of nonlinear flux also dominate trough decay. Contributions from nonlinear advective eddy flux are large in the presence of a strong ridge either immediately upstream or downstream of the trough. Furthermore, anticyclonic components of advective LWA fluxes associated with the upstream or downstream ridge transfer LWA into or out of the trough. Diabatic contributions are significant when the heating exhibits a tilted vertical structure that gives rise to enhanced vertical gradient in heating. 
                        more » 
                        « less   
                    
                            
                            Imprint of Diabatic Processes in the Waviness of the Jet Stream: An Analysis of Local Wave Activity Budget
                        
                    
    
            Abstract Given the widespread presence of clouds in the midlatitudes, one expects significant effects of condensational and radiative processes on the large-scale circulation of the atmosphere, but these diabatic effects are hard to constrain from observation. The authors propose a simple method to estimate the diabatic effects on the waviness of the jet stream based on the observed column-mean budget of Rossby wave activity. Wave activity in the midlatitudes is maintained by injection due to surface baroclinicity and/or diabatic sources, downstream transport due to advection and wave radiation, and eventual dissipation through mixing and thermal damping. Once the diabatic sources of wave activity are identified from the residual of the budget, one can suppress them and recompute the budget assuming that the transport velocity and damping rate do not change and thereby assess the impact of the diabatic sources. For the Northern Hemisphere, we found significant positive values of the residual in regions coincident with high column cloud water, suggesting that there are diabatic sources of wave activity associated with clouds. In winter, maritime diabatic sources contribute to wave activity over the Atlantic and the Pacific by about 33% and 30%, respectively, while in summer, the numbers are lower. The estimates are based on the assumptions that the perturbed wave sources do not alter the flow and that sources and sinks are geographically separated. For the Southern Hemisphere, this last assumption is questionable, and therefore, the confidence level of the estimates is low. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2154523
- PAR ID:
- 10550146
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 37
- Issue:
- 22
- ISSN:
- 0894-8755
- Format(s):
- Medium: X Size: p. 5703-5719
- Size(s):
- p. 5703-5719
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Convection‐generated gravity waves (CGWs) transport momentum and energy, and this momentum is a dominant driver of global features of Earth's atmosphere's general circulation (e.g., the quasi‐biennial oscillation, the pole‐to‐pole mesospheric circulation). As CGWs are not generally resolved by global weather and climate models, their effects on the circulation need to be parameterized. However, quality observations of GWs are spatiotemporally sparse, limiting understanding and preventing constraints on parameterizations. Convection‐permitting or ‐resolving simulations do generate CGWs, but validation is not possible as these simulations cannot reproduce the CGW‐forcing convection at correct times, locations, and intensities. Here, realistic convective diabatic heating, learned from full‐physics convection‐permitting Weather Research and Forecasting simulations, is predicted from weather radar observations using neural networks and a previously developed look‐up table. These heating rates are then used to force an idealized GW‐resolving dynamical model. Simulated CGWs forced in this way closely resembled those observed by the Atmospheric InfraRed Sounder in the upper stratosphere. CGW drag in these validated simulations extends 100s of kilometers away from the convective sources, highlighting errors in current gravity wave drag parameterizations due to the use of the ubiquitous single‐column approximation. Such validatable simulations have significant potential to be used to further basic understanding of CGWs, improve their parameterizations physically, and provide more restrictive constraints on tuningwith confidence.more » « less
- 
            Abstract Convectively coupled waves (CCWs) over the Western Hemisphere are classified based on their governing thermodynamics. It is found that only the tropical depressions (TDs; TD waves) satisfy the criteria necessary to be considered a moisture mode, as in the Rossby-like wave found in an earlier study. In this wave, water vapor fluctuations play a much greater role in the thermodynamics than temperature fluctuations. Only in the eastward-propagating inertio-gravity (EIG) wave does temperature govern the thermodynamics. Temperature and moisture play comparable roles in all the other waves, including the Madden–Julian oscillation over the Western Hemisphere (MJO-W). The moist static energy (MSE) budget of CCWs is investigated by analyzing ERA5 data and data from the 2014/15 observations and modeling of the Green Ocean Amazon (GoAmazon 2014/15) field campaign. Results reveal that vertical advection of MSE acts as a primary driver of the propagation of column MSE in westward inertio-gravity (WIG) wave, Kelvin wave, and MJO-W, while horizontal advection plays a central role in the mixed Rossby gravity (MRG) and TD wave. Results also suggest that cloud radiative heating and the horizontal MSE advection govern the maintenance of most of the CCWs. Major disagreements are found between ERA5 and GoAmazon. In GoAmazon, convection is more tightly coupled to variations in column MSE, and vertical MSE advection plays a more prominent role in the MSE tendency. These results along with substantial budget residuals found in ERA5 data suggest that CCWs over the tropical Western Hemisphere are not represented adequately in the reanalysis. Significance StatementIn comparison to other regions of the globe, the weather systems that affect precipitation in the tropical Western Hemisphere have received little attention. In this study, we investigate the structure, propagation, and thermodynamics of convectively coupled waves that impact precipitation in this region. We found that slowly evolving tropical systems are “moisture modes,” i.e., moving regions of high humidity and precipitation that are maintained by interactions between clouds and radiation. The faster waves are systems that exhibit relatively larger fluctuations in temperature. Vertical motions are more important for the movement of rainfall in these waves. Last, we found that reanalysis and observations disagree over the importance of different processes in the waves that occurred over the Amazon region, hinting at potential deficiencies on how the reanalysis represents clouds in this region.more » « less
- 
            Abstract The Dynamics of the Madden-Julian Oscillation (MJO) field campaign (DYNAMO) over the central Indian Ocean captured three strong MJO events during October-December 2011. Using the conventional budget approach of Yanai et al., surface rainfall P 0 is computed as a residual from the vertically integrated form of the moisture budget equation. This budget-derived P 0 is spatially averaged over the Gan Island NCAR S-PolKa radar domain and compared with rainfall estimates from the radar itself. To isolate the MJO signal, these rainfall time series are low-pass (LP) filtered and a three-MJO composite is created based on the time of maximum LP-filtered S-PolKa rainfall for each event. A comparison of the two composite rainfall estimates shows that the budget rainfall overestimates the radar rainfall by ∼ 15% in the MJO build-up stage and underestimates radar rainfall by ∼ 8% in the MJO decay stage. These rainfall differences suggest that hydrometeor (clouds and rain) storage and advection effects, which are neglected in the budget approach, are likely significant. Satellite and ground-based observations are used to investigate these hydrometeor storage and advection effects. While the findings are qualitatively consistent with expectations from theory, they fall short of explaining their full magnitude, suggesting even more refined experimental designs and measurements will be needed to adequately address this issue.more » « less
- 
            Abstract Atmospheric blocking entails a persistent, anomalous meandering of the jet stream that disrupts the eastward migration of transient eddies in the midlatitudes. Here we analyze a large number of blocking (and blocking-like) events in the Northern Hemisphere winter with the ERA5 reanalysis through the lens of vertically-averaged wave-activity budget. By applying a feature tracking algorithm, large-valued wave-activity anomalies that persist for 4 days or longer at a given location are identified as blocks, and block-centered composites are constructed for the wave-activity budget through the lifecycle of blocks. The identified events share commonly recognized features of blocking. The majority of the persistent events occur in clusters collocated with the quasi-stationary ridge associated with the Atlantic and the Pacific storm track. Frequency of persistent blocks is higher (lower) in regions where the ‘carrying capacity’ of the jet stream is lower (higher). A very low carrying capacity for the transient waves leads to a large population of blocks over Europe. The composite lifecycle of persistent blocks shows that convergence (divergence) of the zonal flux of wave-activity dominates the budget during the onset (decay) phase of the block, while the eddy-induced wind plays a crucial role of suppressing the zonal flux during the maturation period. Our finding broadly supports the ‘traffic jam’ hypothesis of Nakamura and Huang as a common mechanism of block formation, although there is vast diversity in the actual manifestation of individual blocks. It is argued that carrying capacity is suited for estimating blocking probability rather than for making deterministic forecasts of blocking events.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
