This paper presents a power-efficient complementary metal-oxide-semiconductor (CMOS) neural signal-recording read-out circuit for multichannel neuromodulation implants. The system includes a neural amplifier and a successive approximation register analog-to-digital converter (SAR-ADC) for recording and digitizing neural signal data to transmit to a remote receiver. The synthetic neural signal is generated using a LabVIEW myDAQ device and processed through a LabVIEW GUI. The read-out circuit is designed and fabricated in the standard 0.5 μμm CMOS process. The proposed amplifier uses a fully differential two-stage topology with a reconfigurable capacitive-resistive feedback network. The amplifier achieves 49.26 dB and 60.53 dB gain within the frequency bandwidth of 0.57–301 Hz and 0.27–12.9 kHz to record the local field potentials (LFPs) and the action potentials (APs), respectively. The amplifier maintains a noise–power tradeoff by reducing the noise efficiency factor (NEF) to 2.53. The capacitors are manually laid out using the common-centroid placement technique, which increases the linearity of the ADC. The SAR-ADC achieves a signal-to-noise ratio (SNR) of 45.8 dB, with a resolution of 8 bits. The ADC exhibits an effective number of bits of 7.32 at a low sampling rate of 10 ksamples/s. The total power consumption of the chip is 26.02 μμW, which makes it highly suitable for a multi-channel neural signal recording system.
more »
« less
Intan Technologies integrated circuits can produce analog-to-digital conversion artifacts that affect neural signal acquisition
Abstract Objective.Intan Technologies’ integrated circuits (ICs) are valuable tools for neurophysiological data acquisition, providing signal amplification, filtering, and digitization from many channels (up to 64 channels/chip) at high sampling rates (up to 30 kSPS) within a compact package (⩽9× 7 mm). However, we found that the analog-to-digital converters (ADCs) in the Intan RHD2000 series ICs can produce artifacts in recorded signals. Here, we examine the effects of these ADC artifacts on neural signal quality and describe a method to detect them in recorded data.Approach.We identified two types of ADC artifacts produced by Intan ICs: 1) jumps, resulting from missing output codes, and 2) flatlines, resulting from overrepresented output codes. We identified ADC artifacts in neural recordings acquired with Intan RHD2000 ICs and tested the repeated performance of 17 ICsin vitro. With the on-chip digital-signal-processing disabled, we detected the ADC artifacts in each test recording by examining the distribution of unfiltered ADC output codes.Main Results.We found larger ADC artifacts in recordings using the Intan RHX data acquisition software versions 3.0–3.2, which did not run the necessary ADC calibration command when the inputs to the Intan recording controller were rescanned. This has been corrected in the Intan RHX software version 3.3. We found that the ADC calibration routine significantly reduced, but did not fully eliminate, the occurrence and size of ADC artifacts as compared with recordings acquired when the calibration routine was not run (p< 0.0001). When the ADC calibration routine was run, we found that the artifacts produced by each ADC were consistent over time, enabling us to sort ICs by performance.Significance.Our findings call attention to the importance of evaluating signal quality when acquiring electrophysiological data using Intan Technologies ICs and offer a method for detecting ADC artifacts in recorded data.
more »
« less
- Award ID(s):
- 1752274
- PAR ID:
- 10550446
- Publisher / Repository:
- Journal of Neural Engineering
- Date Published:
- Journal Name:
- Journal of Neural Engineering
- Volume:
- 21
- Issue:
- 4
- ISSN:
- 1741-2560
- Page Range / eLocation ID:
- 044001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A 4-channel code-multiplexed digital receiver is presented for multiple-input-multiple-output (MIMO) applications targeting 5G millimeter-wave (mm-Wave) communications. The receiver employs a code-multiplexing (CM) topology where multiple channels are encoded with unique orthogonal Walsh Hadamard codes and multiplexed into a single-channel for digitization. This approach overcomes the bottleneck of hardware complexity, cost, and power consumption in traditional multiplexing topologies by employing a single wideband analog-to-digital converter (ADC) to serve several channels. The article presents an end-to-end testbed to demonstrate the effectiveness of the proposed Code-Multiplexed Digital Receiver (CMDR) that consists of l ) ultrawideband (UWB) tightly-coupled dipole array (TCDA), 2) a custom-designed encoder circuit board (ECB), and 3) a Radio-Frequency System-on-Chip (RFSoC) field programmable gate array (FPGA) for encoding and decoding. The code sequences were generated at a maximum clock frequency of 400 MHz. Extensive experimental measurements were performed and test results were validated using performance metrics such as normalized mean square error (NMSE) and adjacent channel interference (ACI). Test results showed ACI of >20 dB, NMSE = -24.592 dB and little or no degradation in signal-to-noise ratio (SNR). To the best of our knowledge, this is the highest clock frequency and ACI value for hardware validation of channel multiplexing scheme reported in the literature.more » « less
-
Neural signal recording and optical stimulation using implantable devices have become a ubiquitous method to treat brain disorders, yet there lie some shortcomings, such as size, weight, and functionalities of the implants. This work presents a commercial off-the-shelf (COTS) component-based miniaturized wireless optogenetic headstage with simultaneous optical stimulation and electrophysiological recording for freely moving rats. The system includes a battery-based neural stimulator consisting of a low-dropout (LDO) regulator, an oscillator, and a μ LED. The electrophysiological signal recording system includes an intracortical neural probe implemented on a shape memory polymer (SMP) substrate, an array of neural amplifiers with an integrated analog-to-digital converter (ADC), a transceiver IC, and a ceramic antenna. A digital sub-1-GHz transceiver integrated with a low-power microcontroller (MCU) is used to transmit the acquired neural data to a remote receiver unit, followed by offline spike detection and sorting in LabVIEW. The front-end recording amplifiers provide a gain of 45.7 dB with the input-referred noise of 2.4μVrms . The integrated multiplexer (MUX) with the ADC allows sampling of the amplified voltage at a configurable sampling rate of 160–480 kSamples/s. The total power consumption of the stimulation and the recording system is 23 mW. The dimension of the headstage device is 13.5×21.3 mm, weighing 4 g without the battery. The system is experimentally validated in an in vivo setting by placing the headstage on the head of a male rat and recording the neural signals from the ventral tegmental area (VTA) of the brain. This integrative neural signal recording and spike sorting approach would be useful for the development of a closed-loop neuromodulation system.more » « less
-
This paper demonstrates a commercial off-the-shelf components (COTS)-based miniaturized wireless optogenetic headstage with simultaneous optical stimulation and electro-physiological recording capability for freely moving rodents. The proposed headstage contains 32 recording channels. The optical stimulation system is a battery-powered neural stimulator, comprised of a low dropout regulator (LDO), an oscillator, and a µLED. The electrophysiological signal recording system includes an intracortical neural probe made of a GaN-on-silicon substrate, an array of neural amplifiers with an integrated analog-to-digital converter (ADC), a transceiver integrated circuit, and a ceramic antenna. The integrated MUX with the ADC allows sampling of the amplified voltage at a sampling rate of 4000 kSamples/s. By placing the headstage on the head of a rodent and recording the neural signals from the Ventral Tegmental area of the brain, the system is experimentally validated in in-vivo. Experimental result shows that the proposed headstage can trigger neuron activity while collecting and detecting single-cell microvolt amplitude activity from multiple channels.more » « less
-
Abstract Radiation measurement relies on pulse detection, which can be performed using various configurations of high-speed analog-to-digital converters (ADCs) and field-programmable gate arrays (FPGAs). For optimal power consumption, design simplicity, system flexibility, and the availability of DSP slices, we consider the Radio Frequency System-on-Chip (RFSoC) to be a more suitable option than traditional setups. To this end, we have developed custom RFSoC-based electronics and verified its feasibility. The ADCs on RFSoC exhibit a flat frequency response of 1–125 MHz. The root-mean-square (RMS) noise level is 2.1 ADC without any digital signal processing. The digital signal processing improves the RMS noise level to 0.8 ADC (input equivalent 40 μVrms). Baseline correction via digital signal processing can effectively prevent photomultiplier overshoot after a large pulse. Crosstalk between all channels is less than -55 dB. The measured data transfer speed can support up to 32 kHz trigger rates (corresponding to 750 Mbps). Overall, our RFSoC-based electronics are highly suitable for pulse detection, and after some modifications, they will be employed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND).more » « less
An official website of the United States government

