skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: RFSoC-based front-end electronics for pulse detection
Abstract Radiation measurement relies on pulse detection, which can be performed using various configurations of high-speed analog-to-digital converters (ADCs) and field-programmable gate arrays (FPGAs). For optimal power consumption, design simplicity, system flexibility, and the availability of DSP slices, we consider the Radio Frequency System-on-Chip (RFSoC) to be a more suitable option than traditional setups. To this end, we have developed custom RFSoC-based electronics and verified its feasibility. The ADCs on RFSoC exhibit a flat frequency response of 1–125 MHz. The root-mean-square (RMS) noise level is 2.1 ADC without any digital signal processing. The digital signal processing improves the RMS noise level to 0.8 ADC (input equivalent 40 μVrms). Baseline correction via digital signal processing can effectively prevent photomultiplier overshoot after a large pulse. Crosstalk between all channels is less than -55 dB. The measured data transfer speed can support up to 32 kHz trigger rates (corresponding to 750 Mbps). Overall, our RFSoC-based electronics are highly suitable for pulse detection, and after some modifications, they will be employed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND).  more » « less
Award ID(s):
2310130 2110720
PAR ID:
10520036
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
JINST and arXiv
Date Published:
Journal Name:
Journal of Instrumentation
Volume:
19
Issue:
03
ISSN:
1748-0221
Page Range / eLocation ID:
P03013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper discusses early results associated with a fully-digital direct-conversion array receiver at 28 GHz. The proposed receiver makes use of commercial off-the-shelf (COTS) electronics, including the receiver chain. The design consists of a custom 28 GHz patch antenna sub-array providing gain in the elevation plane, with azimuthal plane beamforming provided by real-time digital signal processing (DSP) algorithms running on a Xilinx Radio Frequency System on Chip (RF SoC). The proposed array receiver employs element-wise fully-digital array processing that supports ADC sample rates up to 2 GS/second and up to 1 GHz of operating bandwidth per antenna. The RF mixed-signal data conversion circuits and DSP algorithms operate on a single-chip RFSoC solution installed on the Xilinx ZCU1275 prototyping platform. 
    more » « less
  2. Abstract Attosecond science has demonstrated that electrons can be controlled on the sub-cycle time scale of an optical waveform, paving the way towards optical frequency electronics. However, these experiments historically relied on high-energy laser pulses and detection not suitable for microelectronic integration. For practical optical frequency electronics, a system suitable for integration and capable of generating detectable signals with low pulse energies is needed. While current from plasmonic nanoantenna emitters can be driven at optical frequencies, low charge yields have been a significant limitation. In this work we demonstrate that large-scale electrically connected plasmonic nanoantenna networks, when driven in concert, enable charge yields sufficient for single-shot carrier-envelope phase detection at repetition rates exceeding tens of kilohertz. We not only show that limitations in single-shot CEP detection techniques can be overcome, but also demonstrate a flexible approach to optical frequency electronics in general, enabling future applications such as high sensitivity petahertz-bandwidth electric field sampling or logic-circuits. 
    more » « less
  3. All-digital basestation (BS) architectures for millimeter-wave (mmWave) massive multi-user multiple-input multiple-output (MU-MIMO), which equip each radio-frequency chain with dedicated data converters, have advantages in spectral efficiency, flexibility, and baseband-processing simplicity over hybrid analog-digital solutions. For all-digital architectures to be competitive with hybrid solutions in terms of power consumption, novel signal-processing methods and baseband architectures are necessary. In this paper, we demonstrate that adapting the resolution of the analog-to-digital converters (ADCs) and spatial equalizer of an all-digital system to the communication scenario (e.g., the number of users, modulation scheme, and propagation conditions) enables orders-of-magnitude power savings for realistic mmWave channels. For example, for a 256-BS-antenna 16-user system supporting 1 GHz bandwidth, a traditional baseline architecture designed for a 64-user worst-case scenario would consume 23 W in 28 nm CMOS for the ADC array and the spatial equalizer, whereas a resolution-adaptive architecture is able to reduce the power consumption by 6.7×. 
    more » « less
  4. Massive multiple-input multiple-output (MIMO) communications using low-resolution analog-to-digital converters (ADCs) is a promising technology for providing high spectral and energy efficiency with affordable hardware cost and power consumption. However, the use of low-resolution ADCs requires special signal processing methods for channel estimation and data detection since the resulting system is severely non-linear. This paper proposes joint channel estimation and data detection methods for massive MIMO systems with low-resolution ADCs based on the variational Bayes (VB) inference framework. We first derive matched-filter quantized VB (MF-QVB) and linear minimum mean-squared error quantized VB (LMMSE-QVB) detection methods assuming the channel state information (CSI) is available. Then we extend these methods to the joint channel estimation and data detection (JED) problem and propose two methods we refer to as MF-QVB-JED and LMMSE-QVB-JED. Unlike conventional VB-based detection methods that assume knowledge of the second-order statistics of the additive noise, we propose to float the elements of the noise covariance matrix as unknown random variables that are used to account for both the noise and the residual inter-user interference. We also present practical aspects of the QVB framework to improve its implementation stability. Finally, we show via numerical results that the proposed VB-based methods provide robust performance and also significantly outperform existing methods. 
    more » « less
  5. We consider channel estimation for an uplink massive multiple input multiple output (MIMO) system where the base station (BS) uses a first-order spatial Sigma-Delta (Σ△) analog-to-digital converter (ADC) array. The Σ△ array consists of closely spaced sensors which oversample the received signal and provide a coarsely quantized (1-bit) output. We develop a linear minimum mean squared error (LMMSE) estimator based on the Bussgang decomposition that reformulates the nonlinear quantizer model using an equivalent linear model plus quantization noise. The performance of the proposed Σ△ LMMSE estimator is compared via simulation to channel estimation using standard 1-bit quantization and also infinite resolution ADCs. 
    more » « less