skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 17, 2025

Title: Nanoparticle Diffusion in Crowded Polymer Nanocomposite Melts
This study examines nanoparticle diffusion in crowded polymer nanocomposites by diffusing small Al2O3 nanoparticles (NPs) in SiO2-loaded P2VP matrices. Time-of-flight secondary ion mass spectroscopy (ToF-SIMS) measures Al2O3 NP diffusion coefficients within a homogeneous PNC background of larger, immobile SiO2 NPs. By developing a geometric model for the average interparticle distance in a system with two NP sizes, we quantify nanocomposite confinement relative to the Al2O3 NP size with a bound layer. At low SiO2 concentrations, Al2O3 NP diffusion aligns with the neat polymer results. In more crowded nanocomposites with higher SiO2 concentrations where the interparticle distance approaches the size of the mobile Al2O3 NP, the 6.5 nm Al2O3 NPs diffuse faster than predicted by both core–shell and vehicular diffusion models. Relative to our previous studies of NPs diffusing into polymers, these findings demonstrate that the local environment in crowded systems significantly complicates NP diffusion behavior and the bound layer lifetimes.  more » « less
Award ID(s):
2034122
PAR ID:
10550853
Author(s) / Creator(s):
;
Publisher / Repository:
American Chemical Society (ACS)
Date Published:
Journal Name:
ACS Macro Letters
Volume:
13
Issue:
9
ISSN:
2161-1653
Page Range / eLocation ID:
1192 to 1197
Subject(s) / Keyword(s):
Diffusion, layers, nanocomposites, nanoparticles, polymers
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented. 
    more » « less
  2. When polymer–nanoparticle (NP) attractions are sufficiently strong, a bound polymer layer with a distinct dynamic signature spontaneously forms at the NP interface. A similar phenomenon occurs near a fixed attractive substrate for thin polymer films. While our previous simulations fixed the NPs to examine the dilute limit, here, we allow the NP to move. Our goal is to investigate how NP mobility affects the signature of the bound layer. For small NPs that are relatively mobile, the bound layer is slaved to the motion of the NP, and the signature of the bound layer relaxation in the intermediate scattering function essentially disappears. The slow relaxation of the bound layer can be recovered when the scattering function is measured in the NP reference frame, but this process would be challenging to implement in experimental systems with multiple NPs. Instead, we use the counterintuitive result that the NP mass affects its mobility in the nanoscale limit, along with the more expected result that the bound layer increases the effective NP mass, to suggest that the signature of the bound polymer manifests as a change in NP diffusivity. These findings allow us to rationalize and quantitatively understand the results of recent experiments focused on measuring NP diffusivity with either physically adsorbed or chemically end-grafted chains. 
    more » « less
  3. Abstract A top‐down lithographic patterning and deposition process is reported for producing nanoparticles (NPs) with well‐defined sizes, shapes, and compositions that are often not accessible by wet‐chemical synthetic methods. These NPs are ligated and harvested from the substrate surface to prepare colloidal NP dispersions. Using a template‐assisted assembly technique, fabricated NPs are driven by capillary forces to assemble into size‐ and shape‐engineered templates and organize into open or close‐packed multi‐NP structures or NP metamolecules. The sizes and shapes of the NPs and of the templates control the NP number, coordination, interparticle gap size, disorder, and location of defects such as voids in the NP metamolecules. The plasmonic resonances of polygonal‐shaped Au NPs are exploited to correlate the structure and optical properties of assembled NP metamolecules. Comparing open and close‐packed architectures highlights that introduction of a center NP to form close‐packed assemblies supports collective interactions, altering magnetic optical modes and multipolar interactions in Fano resonances. Decreasing the distance between NPs strengthens the plasmonic coupling, and the structural symmetries of the NP metamolecules determine the orientation‐dependent scattering response. 
    more » « less
  4. Abstract Polymer nanocomposites with high loadings of nanoparticles (NPs) exhibit exceptional mechanical and transport properties. Separation of polymers and NPs from such nanocomposites is a critical step in enabling the recycling of these components and reducing the potential environmental hazards that can be caused by the accumulation of nanocomposite wastes in landfills. However, the separation typically requires the use of organic solvents or energy‐intensive processes. Using polydimethylsiloxane (PDMS)‐infiltrated SiO2NP films, we demonstrate that the polymers can be separated from the SiO2NP packings when these nanocomposites are exposed to high humidity and water. The findings indicate that the charge state of the NPs plays a significant role in the propensity of water to undergo capillary condensation within the PDMS‐filled interstitial pores. We also show that the size of NPs has a crucial impact on the kinetics and extent of PDMS expulsion, illustrating the importance of capillary forces in inducing PDMS expulsion. We demonstrate that the separated polymer can be collected and reused to produce a new nanocomposite film. The work provides insightful guidelines on how to design and fabricate end‐of‐life recyclable high‐performance nanocomposites. 
    more » « less
  5. Both the dispersion state of nanoparticles (NPs) within polymer nanocomposites (PNCs) and the dynamical state of the polymer altered by the presence of the NP/polymer interfaces have a strong impact on the macroscopic properties of PNCs. In particular, mechanical properties are strongly affected by percolation of hard phases, which may be NP networks, dynamically modified polymer regions, or combinations of both. In this article, the impact on dispersion and dynamics of surface modification of the NPs by short monomethoxysilanes with eight carbons in the alkyl part (C8) is studied. As a function of grafting density and particle content, polymer dynamics is followed by broadband dielectric spectroscopy and analyzed by an interfacial layer model, whereas the particle dispersion is investigated by small-angle X-ray scattering and analyzed by reverse Monte Carlo simulations. NP dispersions are found to be destabilized only at the highest grafting. The interfacial layer formalism allows the clear identification of the volume fraction of interfacial polymer, with its characteristic time. The strongest dynamical slow-down in the polymer is found for unmodified NPs, while grafting weakens this effect progressively. The combination of all three techniques enables a unique measurement of the true thickness of the interfacial layer, which is ca. 5 nm. Finally, the comparison between longer (C18) and shorter (C8) grafts provides unprecedented insight into the efficacy and tunability of surface modification. It is shown that C8-grafting allows for a more progressive tuning, which goes beyond a pure mass effect. 
    more » « less