skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finiteness of reductions of Hecke orbits
We prove two finiteness results for reductions of Hecke orbits of abelian varieties over local fields: one in the case of supersingular reduction and one in the case of reductive monodromy. As an application, we show that only finitely many abelian varieties on a fixed isogeny leaf admit CM lifts, which in particular implies that in each fixed dimensiongonly finitely many supersingular abelian varieties admit CM lifts. Combining this with the Kuga–Satake construction, we also show that only finitely many supersingular K3surfaces admit CM lifts. Our tools includep-adic Hodge theory and group-theoretic techniques.  more » « less
Award ID(s):
2337467
PAR ID:
10550856
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
JEMS
Date Published:
Journal Name:
Journal of the European Mathematical Society
ISSN:
1435-9855
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that every finite abelian group occurs as the group of rational points of an ordinary abelian variety over F 2 \mathbb {F}_2 , F 3 \mathbb {F}_3 and F 5 \mathbb {F}_5 . We produce partial results for abelian varieties over a general finite field  F q \mathbb {F}_q . In particular, we show that certain abelian groups cannot occur as groups of rational points of abelian varieties over F q \mathbb {F}_q when q q is large. Finally, we show that every finite cyclic group arises as the group of rational points of infinitely many simple abelian varieties over  F 2 \mathbb {F}_2
    more » « less
  2. We study the asymptotic behavior of the counting function of negative eigenvalues of Schrödinger operators with real valued potentials which decay at infinity on asymptotically hyperbolic manifolds. We establish conditions on the rate of decay of the potential that determine if there are finitely or infinitely many negative eigenvalues. In the latter case, they may only accumulate at zero and we obtain the asymptotic behavior of the counting function of eigenvalues in an interval(-\infty, -E)asE\rightarrow 0. 
    more » « less
  3. Abstract In this paper, we establish some finiteness results about the multiplicative dependence of rational values modulo sets which are ‘close’ (with respect to the Weil height) to division groups of finitely generated multiplicative groups of a number fieldK. For example, we show that under some conditions on rational functions$$f_1, \ldots, f_n\in K(X)$$, there are only finitely many elements$$\alpha \in K$$such that$$f_1(\alpha),\ldots,f_n(\alpha)$$are multiplicatively dependent modulo such sets. 
    more » « less
  4. Abstract The Markoff graphs modulopwere proven by Chen (Ann Math 199(1), 2024) to be connected for all but finitely many primes, and Baragar (The Markoff equation and equations of Hurwitz. Brown University, 1991) conjectured that they are connected for all primes, equivalently that every solution to the Markoff equation moduloplifts to a solution over$$\mathbb {Z}$$ Z . In this paper, we provide an algorithmic realization of the process introduced by Bourgain et al. [arXiv:1607.01530] to test whether the Markoff graph modulopis connected for arbitrary primes. Our algorithm runs in$$o(p^{1 + \epsilon })$$ o ( p 1 + ϵ ) time for every$$\epsilon > 0$$ ϵ > 0 . We demonstrate this algorithm by confirming that the Markoff graph modulopis connected for all primes less than one million. 
    more » « less
  5. Abstract In 2021, Chen proved that the size of any connected component of the Markoff mod$$p$$ p graph is divisible by$$p$$ p . In combination with the work of Bourgain, Gamburd, and Sarnak, Chen’s result resolves a conjecture of Baragar for all but finitely many primes: the Markoff mod$$p$$ p graph is connected. In particular, strong approximation for Markoff triples holds for all but finitely many primes. We provide an alternative proof of Chen’s theorem. 
    more » « less