Abstract Given a suitable solutionV(t, x) to the Korteweg–de Vries equation on the real line, we prove global well-posedness for initial data$$u(0,x) \in V(0,x) + H^{-1}(\mathbb {R})$$ . Our conditions onVdo include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles$$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$ satisfy our hypotheses. In particular, we can treat localized perturbations of the much-studied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022.https://doi.org/10.1088/1361-6544/ac37f5) we show that smooth step-like initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019.https://doi.org/10.4007/annals.2019.190.1.4) where$$V\equiv 0$$ . In that setting, it is known that$$H^{-1}(\mathbb {R})$$ is sharp in the class of$$H^s(\mathbb {R})$$ spaces.
more »
« less
This content will become publicly available on March 1, 2026
An almost linear time algorithm testing whether the Markoff graph modulo p is connected
Abstract The Markoff graphs modulopwere proven by Chen (Ann Math 199(1), 2024) to be connected for all but finitely many primes, and Baragar (The Markoff equation and equations of Hurwitz. Brown University, 1991) conjectured that they are connected for all primes, equivalently that every solution to the Markoff equation moduloplifts to a solution over$$\mathbb {Z}$$ . In this paper, we provide an algorithmic realization of the process introduced by Bourgain et al. [arXiv:1607.01530] to test whether the Markoff graph modulopis connected for arbitrary primes. Our algorithm runs in$$o(p^{1 + \epsilon })$$ time for every$$\epsilon > 0$$ . We demonstrate this algorithm by confirming that the Markoff graph modulopis connected for all primes less than one million.
more »
« less
- Award ID(s):
- 2401305
- PAR ID:
- 10626983
- Publisher / Repository:
- SpringerNature
- Date Published:
- Journal Name:
- Research in Number Theory
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2522-0160
- Page Range / eLocation ID:
- 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We construct a new one-parameter family, indexed by$$\epsilon $$ , of two-ended, spatially-homogeneous black hole interiors solving the Einstein–Maxwell–Klein–Gordon equations with a (possibly zero) cosmological constant$$\Lambda $$ and bifurcating off a Reissner–Nordström-(dS/AdS) interior ($$\epsilon =0$$ ). For all small$$\epsilon \ne 0$$ , we prove that, although the black hole is charged, its terminal boundary is an everywhere-spacelikeKasner singularity foliated by spheres of zero radiusr. Moreover, smaller perturbations (i.e. smaller$$|\epsilon |$$ ) aremore singular than larger ones, in the sense that the Hawking mass and the curvature blow up following a power law of the form$$r^{-O(\epsilon ^{-2})}$$ at the singularity$$\{r=0\}$$ . This unusual property originates from a dynamical phenomenon—violent nonlinear collapse—caused by the almost formation of a Cauchy horizon to the past of the spacelike singularity$$\{r=0\}$$ . This phenomenon was previously described numerically in the physics literature and referred to as “the collapse of the Einstein–Rosen bridge”. While we cover all values of$$\Lambda \in \mathbb {R}$$ , the case$$\Lambda <0$$ is of particular significance to the AdS/CFT correspondence. Our result can also be viewed in general as a first step towards the understanding of the interior of hairy black holes.more » « less
-
Abstract Given integers$$n> k > 0$$ , and a set of integers$$L \subset [0, k-1]$$ , anL-systemis a family of sets$$\mathcal {F}\subset \left( {\begin{array}{c}[n]\\ k\end{array}}\right) $$ such that$$|F \cap F'| \in L$$ for distinct$$F, F'\in \mathcal {F}$$ .L-systems correspond to independent sets in a certain generalized Johnson graphG(n, k, L), so that the maximum size of anL-system is equivalent to finding the independence number of the graphG(n, k, L). TheLovász number$$\vartheta (G)$$ is a semidefinite programming approximation of the independence number$$\alpha $$ of a graphG. In this paper, we determine the leading order term of$$\vartheta (G(n, k, L))$$ of any generalized Johnson graph withkandLfixed and$$n\rightarrow \infty $$ . As an application of this theorem, we give an explicit construction of a graphGonnvertices with a large gap between the Lovász number and the Shannon capacityc(G). Specifically, we prove that for any$$\epsilon > 0$$ , for infinitely manynthere is a generalized Johnson graphGonnvertices which has ratio$$\vartheta (G)/c(G) = \Omega (n^{1-\epsilon })$$ , which improves on all known constructions. The graphGa fortiorialso has ratio$$\vartheta (G)/\alpha (G) = \Omega (n^{1-\epsilon })$$ , which greatly improves on the best known explicit construction.more » « less
-
Abstract We study the interior of black holes in the presence of charged scalar hair of small amplitude$$\epsilon $$ on the event horizon and show their terminal boundary is a crushing Kasner-like singularity. These spacetimes are spherically symmetric, spatially homogeneous and they differ significantly from the hairy black holes with uncharged matter previously studied in[M. Van de Moortel, Violent nonlinear collapse inside charged hairy black holes, Arch. Rational. Mech. Anal., 248, 89, 2024]in that the electric field is dynamical and subject to the backreaction of charged matter. We prove this charged backreaction causes drastically different dynamics compared to the uncharged case that ultimately impact the formation of the spacelike singularity, exhibiting novel phenomena such asCollapsed oscillations: oscillatory growth of the scalar hair, nonlinearly induced by the collapseAfluctuating collapse: The final Kasner exponents’ dependency in$$\epsilon $$ is via an expression of the form$$|\sin \left( \omega _0 \cdot \epsilon ^{-2}+ O(\log (\epsilon ^{-1}))\right) |$$ .AKasner bounce: a transition from an unstable Kasner metric to a different stable Kasner metricThe Kasner bounce occurring in our spacetime is reminiscent of the celebrated BKL scenario in cosmology. We additionally propose a construction indicating the relevance of the above phenomena – including Kasner bounces – to spacelike singularities inside more general (asymptotically flat) black holes, beyond the hairy case. While our result applies to all values of$$\Lambda \in \mathbb {R}$$ , in the$$\Lambda <0$$ case, our spacetime corresponds to the interior region of a charged asymptotically Anti-de-Sitter stationary black hole, also known as aholographic superconductorin high-energy physics, and whose exterior region was rigorously constructed in the recent mathematical work [W. Zheng,Asymptotically Anti-de Sitter Spherically Symmetric Hairy Black Holes, arXiv.2410.04758].more » « less
-
Abstract This article revisits the problem of global well-posedness for the generalized parabolic Anderson model on$$\mathbb {R}^+\times \mathbb {T}^2$$ within the framework of paracontrolled calculus (Gubinelli et al. in Forum Math, 2015). The model is given by the equation:$$\begin{aligned} (\partial _t-\Delta ) u=F(u)\eta \end{aligned}$$ where$$\eta \in C^{-1-\kappa }$$ with$$1/6>\kappa >0$$ , and$$F\in C_b^2(\mathbb {R})$$ . Assume that$$\eta \in C^{-1-\kappa }$$ and can be lifted to enhanced noise, we derive new a priori bounds. The key idea follows from the recent work by Chandra et al. (A priori bounds for 2-d generalised Parabolic Anderson Model,,2024), to represent the leading error term as a transport type term, and our techniques encompass the paracontrolled calculus, the maximum principle, and the localization approach (i.e. high-low frequency argument).more » « less
An official website of the United States government
