skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deficit angles in 4D spinfoam with a cosmological constant: de Sitter-ness, anti–de Sitter-ness and more
Award ID(s):
2110234 2207763
PAR ID:
10551616
Author(s) / Creator(s):
;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
109
Issue:
8
ISSN:
2470-0010; PRVDAQ
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We construct compactifications of type IIB string theory that yield, at leading order in the α and g s expansions, de Sitter vacua of the form envisioned by Kachru We specify explicit Calabi-Yau orientifolds and quantized fluxes for which we derive the four-dimensional effective supergravity theories, incorporating the exact flux superpotential, the nonperturbative superpotential from Euclidean D3-branes, and the Kähler potential at tree level in the string loop expansion but to all orders in α . Each example includes a Klebanov-Strassler throat region containing a single anti-D3-brane, whose supersymmetry-breaking energy, computed at leading order in α , causes an uplift to a metastable de Sitter vacuum in which all moduli are stabilized. Finding vacua that demonstrably survive subleading corrections, and in which the quantization conditions are completely understood, is an important open problem for which this work has prepared the foundations. Published by the American Physical Society2025 
    more » « less
  2. A bstract This paper expands on two recent proposals, [12, 13] and [14], for generalizing the Ryu-Takayanagi and Hubeny-Rangamani-Takayanagi formulas to de Sitter space. The proposals (called the monolayer and bilayer proposals) are similar; both replace the boundary of AdS by the boundaries of static-patches — in other words event horizons. After stating the rules for each, we apply them to a number of cases and show that they yield results expected on other grounds. The monolayer and bilayer proposals often give the same results, but in one particular situation they disagree. To definitively decide between them we need to understand more about the nature of the thermodynamic limit of holographic systems. 
    more » « less