Fundamental understanding of mechanochemical reactivity is important for designing new mechanophores. Besides the core structure of mechanophores, substituents on a mechanophore can affect its mechanochemical reactivity through electronic stabilization of the intermediate or effectiveness of force transduction from the polymer backbone to the mechanophore. The latter factor represents a unique mechanical effect in considering polymer mechanochemistry. Here, we show that regioisomeric linkage that is not directly adjacent to the first cleaving bond in cyclobutane can still significantly affect the mechanochemical reactivity of the mechanophore. We synthesized three non‐scissile 1,2‐diphenyl cyclobutanes, varying their linkage to the polymer backbone via theo,m, orp‐position of the diphenyl substituents. Even though the regioisomers share the same substituted cyclobutane core structure and similar electronic stabilization of the diradical intermediate from cleaving the first C−C bond, thepisomer exhibited significantly higher mechanochemical reactivity than theoandmisomers. The observed difference in reactivity can be rationalized as the much more effective force transduction to the scissile bond through thep‐position than the other two substitution positions. These findings point to the importance of considering force‐bearing linkages that are more distant from the bond to be cleaved when incorporating mechanophores into polymer backbones.
more »
« less
Mechanochemistry of cyclobutanes
Abstract The field of polymer mechanochemistry has been revolutionized by implementing force-responsive functional groups—mechanophores. The rational design of mechanophores enables the controlled use of force to achieve constructive molecular reactivity and material responses. While a variety of mechanophores have been developed, this Mini Review focuses on cyclobutane, which has brought valuable insights into molecular reactivity and dynamics as well as innovations in materials. We discuss its reactivity and mechanism, dynamics and stereoselectivity, as well as impacts on material properties.
more »
« less
- Award ID(s):
- 2204079
- PAR ID:
- 10552023
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Science China Chemistry
- ISSN:
- 1674-7291
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Polymer mechanochemistry offers attractive opportunities for using macroscopic forces to drive molecular-scale chemical transformations, but achieving efficient activation in bulk polymeric materials has remained challenging. Understanding how the structure and topology of polymer networks impact molecular-scale force distributions is critical for addressing this problem. Here we show that in block copolymer elastomers the molecular-scale force distributions and mechanochemical activation yields are strongly impacted by the molecular weight distribution of the polymers. We prepare bidisperse triblock copolymer elastomers with spiropyran mechanophores placed in either the short chains, the long chains, or both and show that the overall mechanochemical activation of the materials is dominated by the short chains. Molecular dynamics simulations reveal that this preferential activation occurs because pinning of the ends of the elastically effective midblocks to the glassy/rubbery interface forces early extension of the short chains. These results suggest that microphase segregation and network strand dispersity play a critical role in determining molecular-scale force distributions and suggest that selective placement of mechanophores in microphase-segregated polymers is a promising design strategy for efficient mechanochemical activation in bulk materials.more » « less
-
In recent decades, more than 100 different mechanophores with a broad range of activation forces have been developed. For various applications of mechanophores in polymer materials, it is crucial to selectively activate the mechanophores with high efficiency, avoiding nonspecific bond scission of the material. In this study, we embedded cyclobutane-based mechanophore cross-linkers (I and II) with varied activation forces (fa) in the first network of the double network hydrogels and quantitively investigated the activation selectivity and efficiency of these mechanophores. Our findings revealed that cross-linker I, with a lower activation force relative to the bonds in the polymer main chain (fa-I/fa-chain = 0.8 nN/3.4 nN), achieved efficient activation with 100% selectivity. Conversely, an increase of the activation force of mechanophore II (fa-II/fa-chain = 2.5 nN/3.4 nN) led to a significant decrease of its activation efficiency, accompanied by a substantial number of nonspecific bond scission events. Furthermore, with the coexistence of two cross-linkers, significantly different activation forces resulted in the almost complete suppression of the higher-force one (i.e., I and III, fa-I/fa-III = 0.8 nN/3.4 nN), while similar activation forces led to simultaneous activations with moderate efficiencies (i.e., I and IV, fa-I/fa-IV = 0.8 nN/1.6 nN). These findings provide insights into the prevention of nonspecific bond rupture during mechanophore activation and enhance our understanding of the damage mechanism within polymer networks when using mechanophores as detectors. Besides, it establishes a principle for combining different mechanophores to design multiple mechanoresponsive functional materials.more » « less
-
Molecular switches based on the 2H-1-benzopyran (chromene) scaffold have been widely developed for their desirable photochromic and mechanochromic properties. Extended π-conjugation is necessary to stabilize the ring-opened merocyanine dye at room temperature leading to efficient switching under ambient conditions. To this end, naphthopyrans represent a special class of benzo-annulated benzopyrans that have been studied extensively as both photoswitches and more recently as mechanophores, generating intensely colored merocyanine dyes upon exposure to ultraviolet light or mechanical force, respectively. Alternative annulation strategies with judicious heteroatom substitution have also been studied in the photochemistry literature, but the mechanochemistry of 2H-1-benzopyrans has yet to be explored. Here, we report the mechanochemical activation of an indole-fused 2H-1-benzopyran mechanophore that generates a yellow-colored merocyanine dye in polymers that is subsequently transformed to a purple-colored dye upon treatment with acid. Neutralization with base recovers the yellow-colored merocyanine isomer with trans exocyclic alkene geometry through an unusual acid-mediated alkene isomerization. This study expands the repertoire of mechanochromic mechanophores based on (hetero)annulated benzopyrans to enable multicolor chromomorphic behavior in response to both mechanical force and acid for applications in stimuli-responsive polymeric materials with complex switching properties.more » « less
-
Polymers that release small molecules in response to mechanical force are promising candidates as next-generation on-demand delivery systems. Despite advancements in the development of mechanophores for releasing diverse payloads through careful molecular design, the availability of scaffolds capable of discharging biomedically significant cargos in substantial quantities remains scarce. In this report, we detail a nonscissile mechanophore built from an 8-thiabicyclo[3.2.1]octane 8,8-dioxide (TBO) motif that releases one equivalent of sulfur dioxide (SO2) from each repeat unit. The TBO mechanophore exhibits high thermal stability but is activated mechanochemically using solution ultrasonication in either organic solvent or aqueous media with up to 63% efficiency, equating to 206 molecules of SO2 released per 143.3 kDa chain. We quantified the mechanochemical reactivity of TBO by single-molecule force spectroscopy and resolved its single-event activation. The force-coupled rate constant for TBO opening reaches ∼9.0 s–1 at ∼1520 pN, and each reaction of a single TBO domain releases a stored length of ∼0.68 nm. We investigated the mechanism of TBO activation using ab initio steered molecular dynamic simulations and rationalized the observed stereoselectivity. These comprehensive studies of the TBO mechanophore provide a mechanically coupled mechanism of multi-SO2 release from one polymer chain, facilitating the translation of polymer mechanochemistry to potential biomedical applications.more » « less
An official website of the United States government

