skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Investigating Jet Stability in Inkjet Printing Through a Novel Sensing Modality
Abstract In recent years, inkjet 3D printing has rapidly gained prominence as a disruptive fabrication technique that has witnessed ever-increasing demand in the fields of biomedicine, metal manufacturing, electronics, and functional material production. This innovative approach involves precise deposition of controlled amounts of material onto a moving substrate through a nozzle, achieving impressive sub-millimeter scale resolution by leveraging the concepts of micro-droplet deposition. However, the dynamic nature of the process introduces significant challenges related to consistency and quality control, especially in terms of reproducibility and repeatability. The key input parameters governing this process, such as pressure, voltage, jetting frequency, and duty cycle, are interrelated, entailing the identification of optimal settings in order to realize high-quality jetting. At present, the data collection heavily relies on image-based methods which are inherently slow and often fail to encompass the entirety of the data, making it difficult to determine the relation between the input parameters and jet characteristics. To address this multidimensional difficulty, we developed a unique approach based on light-beam field interruption to collect critical jet data at high speeds. This novel approach collects both temporal and spatial information on droplet evolution, making it a vital tool for enhancing our ability to attain high accuracy and control in inkjet 3D printing. To illustrate the efficacy of our approach, we model the extracted features derived from the process parameters and the extracted data to predict the droplet jetting behavior and droplet size. Specifically, a decision tree classifier is used to predict the jetting behavior and discern between “ideal” and “non-ideal” jetting behaviors. Simultaneously, a linear regression model was employed to predict the droplet size within the “ideal jetting” class based on the interplay of process parameters and the extracted features. The results emphasize the system’s accuracy in capturing the droplet behavior and size using our light-beam field interference sensing module. Furthermore, these findings establish a crucial foundation for the implementation of real-time feedback control loop in the inkjet printing process, promising advancements in adaptability and precision.  more » « less
Award ID(s):
2412020 2412678 2332293 2134409 1846863
PAR ID:
10552225
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8810-0
Format(s):
Medium: X
Location:
Knoxville, Tennessee, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Inkjet 3D printing has broad applications in areas such as health and energy due to its capability to precisely deposit micro-droplets of multi-functional materials. However, the droplet of the inkjet printing has different jetting behaviors including drop initiation, thinning, necking, pinching and flying, and they are vulnerable to disturbance from vibration, material inhomogeneity, etc. Such issues make it challenging to yield a consistent printing process and a defect-free final product with desired properties. Therefore, timely recognition of the droplet behavior is critical for inkjet printing quality assessment. In-situ video monitoring of the printing process paves a way for such recognition. In this paper, a novel feature identification framework is presented to recognize the spatiotemporal feature of in-situ monitoring videos for inkjet printing. Specifically, a spatiotemporal fusion network is used for droplet printing behavior classification. The categories are based on inkjet printability, which is related to both the static features (ligament, satellite, and meniscus) and dynamic features (ligament thinning, droplet pinch off, meniscus oscillation). For the recorded droplet jetting video data, two streams of networks, the frames sampled from video in spatial domain (associated with static features) and the optical flow in temporal domain (associated with dynamic features), are fused in different ways to recognize the droplet evolving behavior. Experiments results show that the proposed fusion network can recognize the droplet jetting behavior in the complex printing process and identify its printability with learned knowledge, which can ultimately enable the real-time inkjet printing quality control and further provide guidance to design optimal parameter settings for the inkjet printing process. 
    more » « less
  2. null (Ed.)
    Binder Jetting (BJ) is a low-cost Additive Manufacturing (AM) process that uses inkjet technology to selectively bind particles in a powder bed. BJ relies on the ability to control, not only the placement of binder on the surface but also its imbibition into the powder bed. This is a complex process in which picoliter-sized droplets impact powder beds at velocities of 1–10 m/s. However, the effects of printing parameters such as droplet velocity, size, spacing, and inter-arrival time on saturation level (fraction of pore space filled with binder) and line formation (merging of droplets to form a line) are unknown. Prior attempts to predict saturation levels with simple measurements of droplet primitives and capillary pressure assume that droplet/powder interactions are dominated by static equilibrium and neglect the impact of printing parameters. This study analyzes the influence of these parameters on the effective saturation level and conditions for line formation when printing single lines into powder beds of varied materials (316 stainless steel, 420 stainless steel, and alumina) and varied particle size (d50=10–47 µm). Results show that increasing droplet velocity or droplet spacing decreases effective saturation while droplet spacing, velocity, and inter-arrival time affect line formation. At constant printing velocity, the conditions for successful line printing are shown to be a function of droplet spacing and square root of the droplet inter-arrival time analogous to the Washburn model for infiltration into a porous media. The results have implications to maximizing build rates and improving quality of small features in BJ. 
    more » « less
  3. Inkjet three-dimensional (3D) printing has emerged as a transformative manufacturing technique, finding applications in diverse fields such as biomedical, metal fabrication, and functional materials production. It involves precise deposition of materials onto a moving substrate through a nozzle, achieving submillimeter scale resolution. However, the dynamic nature of droplet deposition introduces uncertainties, challenging consistent quality control. Current process monitoring, relying on image-based techniques, is slow and limited, hindering real-time feedback in erratic droplet ejection. In response to these challenges, we present the zero-dimensional ultrafast sensing (0-DUS) system, a novel, cost-effective, in situ monitoring tool designed to assess the quality of drop-on-demand inkjet printing. The 0-DUS system leverages the sensitivity of the light-beam field interference effect to rapidly and precisely detect and analyze localized droplets. Two core technical advancements drive this innovation: first, the exploration of integral sensing of the computational light-beam field, which allows for efficient extraction of temporal and spatial information about droplet evolution, introducing a novel in situ sensing modality; second, the establishment of a robust mapping mechanism that aligns sensor data with image-based data, facilitating accurate estimation of droplet characteristics. We successfully implemented the 0-DUS system within a commercial inkjet printer and conducted a comparative analysis with ground truth data. Our experimental results demonstrate a detection accuracy exceeding 95%, even at elevated speeds, allowing for an impressive in situ certification throughput of up to 500 Hz. Consequently, our proposed 0-DUS system meets the stringent quality assurance requirements, thereby expanding the potential applications of inkjet printing across a wide spectrum of industrial sectors. 
    more » « less
  4. Additive manufacturing, also known as three-dimensional (3D) printing, is an approach in which a structure may be fabricated layer by layer. For 3D inkjet printing, droplets are ejected from a nozzle and each layer is formed droplet by droplet. Inkjet printing has been widely applied for the fabrication of 3D biological gel structures, but the knowledge of the microscale interactions between printed droplets is still largely elusive. This study aims to elucidate the alginate layer formation process during drop-on-demand inkjet printing using high speed imaging and particle image velocimetry. Droplets are found to impact, spread, and coalesce within a fluid region at the deposition site, forming coherent printed lines within a layer. Interfaces are found to form between printed lines within a layer depending on printing conditions and printing path orientation. The effects of printing conditions on the behavior of droplets during layer formation are discussed and modeled based on gelation dynamics, and recommendations are presented to enable controllable and reliable fabrication of gel structures. 
    more » « less
  5. Abstract Electrohydrodynamic (EHD) printing has been used in various applications (e.g., sensors, batteries, photonic crystals). Currently, research on studying the relationships between EHD jetting behaviors, material properties, and processing conditions is still challenging due to a large number of parameters, cost, time, and the complex nature of experiments. In this research, we investigated EHD printing behavior using a machine learning (ML)-guided approach to overcome limitations in the experiments. Specifically, we investigated two jetting modes and the size of printed material with a broader range of material properties and processing parameters. We used samples from both literature and our own experiment results with different type of materials. Different ML models have been developed and applied to the data. Our results have shown that ML can navigate a vast parameter search space to predict printing behavior with an accuracy of higher than 95% during EHD printing. Moreover, the results showed that ML models can be used to predict the printing behavior and feather size for new materials. The ML models can guide the investigation of EHD printing and helped us understand the printing behavior in a systematic manner with reduced time, cost, and required experiments. 
    more » « less