This research-to-practice full paper describes a cohort-based undergraduate research program designed to improve STEM retention through structured mentoring and community building. Drawing on the Affinity Research Group (ARG) model, the program fosters faculty-student research collaboration and integrates faculty mentorship training, student-led peer mentoring, and structured interventions, such as research skills workshops and networking events. Each year, faculty from biology, chemistry, computer science, environmental science, and mathematics lead small-group research projects with recruited students who may participate for up to three years. Faculty and students receive ARG training to promote consistent mentoring practices. A credit-bearing, major-specific first-year orientation course supports recruitment and reinforces students’ scientific identity. Faculty also engage in professional development workshops to strengthen student-centered mentoring approaches. Data collection includes surveys, interviews, retention tracking, and weekly journaling to assess STEM identity, belonging, and skill development. External evaluators reviewed the faculty focus groups to assess mentoring effectiveness. Initial findings show strong faculty engagement with the ARG model, with many adopting adaptive mentoring strategies that enhance student support. Students report increased confidence and belonging within their disciplines. However, cross-disciplinary collaboration remains limited, highlighting the need for more intentional networking within the cohort. Students also emphasized the value of peer collaboration alongside faculty mentorship. These results suggest that undergraduate research can serve as a powerful tool for building community and supporting persistence in STEM. Ongoing efforts will focus on expanding networking opportunities, strengthening peer collaboration, and evaluating long-term impacts on student retention.
more »
« less
Using a Structured Research Framework to Improve Mentoring Capacity in a Biophysics Research Lab
ABSTRACT Undergraduate research experiences (UREs) cultivate workforce skills, such as critical thinking, project management, and scientific communication. Many UREs in biophysical research have constraints related to limited resources, often resulting in smaller student cohorts, barriers for students entering a research environment, and fewer mentorship opportunities for graduate students. In response to those limitations, we have created a structured URE model that uses an asynchronous training style paired with direct-tiered mentoring delivered by peers, graduate students, and faculty. The adaptive undergraduate research training and experience (AURTE) framework was piloted as part of the Brown Experiential Learning program, a computational biophysics research lab. The program previously demonstrated substantial increases and improvements in the number of students served and skills developed. Here, we discuss the long-term effectiveness of the framework, impacts on graduate and undergraduate students, and efficacy in teaching research skills and computational-based biophysical methods. The longitudinal impact of our structured URE on student outcomes was analyzed by using student exit surveys, interviews, assessments, and 5 years of feedback from alumni. Results indicate high levels of student retention in research compared with university-wide metrics. Also, student feedback emphasizes how tiered mentoring enhanced research skill retention, while allowing graduate mentors to develop mentorship and workforce skills to expedite research. Responses from alumni affirm that workforce-ready skills (communicating science, data management, and scientific writing) acquired in the program persisted and were used in postgraduate careers. The framework reinforces the importance of establishing, iterating, and evaluating a structured URE framework to foster student success in biophysical research, while promoting mentorship skill training for graduate students. Future work will explore the adaptability of the framework in wet lab environments and probe the potential of AURTE in broader educational contexts.
more »
« less
- Award ID(s):
- 2237521
- PAR ID:
- 10552278
- Publisher / Repository:
- The Biophysicist
- Date Published:
- Journal Name:
- The Biophysicist
- ISSN:
- 2578-6970
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT Undergraduate research plays an important role in the development of science students. The two most common forms of undergraduate research are those in traditional settings (such as internships and research-for-credit in academic research labs) and course-based undergraduate research experiences (CUREs). Both of these settings offer many benefits to students, yet they have unique strengths and weaknesses that lead to trade-offs. Traditional undergraduate research experiences (UREs) offer the benefits of personalized mentorship and experience in a professional setting, which help build students’ professional communication skills, interest, and scientific identity. However, UREs can reach only a limited number of students. On the other end of the trade-off, CUREs offer research authenticity in a many-to-one classroom research environment that reaches more students. CUREs provide real research experience in a collaborative context, but CUREs are not yet necessarily equipping students with all of the experiences needed to transition into a research lab environment outside the classroom. We propose that CURE instructors can bridge trade-offs between UREs and CUREs by deliberately including learning goals and activities in CUREs that recreate the benefits of UREs, specifically in the areas of professional communication, scientific identify, and student interest. To help instructors implement this approach, we provide experience- and evidence-based guidance for student-centered, collaborative learning opportunities.more » « less
-
The importance of diversifying the national STEM workforce is well-established in the literature (Marrongelle, 2018). This need extends to graduate education in the STEM fields, leading N.C. A&T to invest considerably in graduate education and wraparound support initiatives that help graduate students build science identity and competencies for careers both within and beyond academia. The NSF-funded Bridges to the Doctorate project will integrate culturally reflective mentoring and professional development specifically designed for Black, Latinx, and Native American Ph.D. students. This holistic, graduate student development model includes academic and professional skill-building for STEM careers alongside targeted support for pursuing fellowship opportunities. This paper discusses the planned mentoring approach for the aforementioned program and previous approaches to mentoring graduate students used at N.C. A&T. The BD Fellows program will support formal and informal mentoring relationships, as mentoring contributes towards retention in STEM graduate programs (Ragins, 2007). BD Fellows will participate in monthly one-hour seminars on how to identify, establish, and maintain informal mentoring relationships (Schwartz et al., 2018; Parnes et al., 2020), while STEM faculty will attend seminars on leveraging their social networks as vital sources of mentorship for the BD Fellows. Using a multi-pronged collaborative approach, this model integrates the evidence-based domains of self-efficacy (Laurencelle & Scanlan, 2018; Lent et al., 1994; Lent et al., 2008), science/research identity (Lent et al., 2015; Zimmerman, 2000), and social cognitive career theory (Lent et al., 2005; Lent and Brown, 2006) to recruit, enroll, and graduate LSAMP Fellows with STEM doctoral degrees. Guided by the theories, the following questions will be addressed: (1) To what extent is culturally reflective mentoring identified as a critical driver of B2D Fellows’ success? (2) To what extent are the program’s training components fostering increases in B2D Fellow’s self-efficacy, competency, and science identity? (3) What is the strength of the correlation between participation in the program training components, mentoring activities, and persistence in graduate school? (4) To what extent does the perceived importance of self-efficacy, competency, and science identity differ by race/ethnicity and gender? These data will be analyzed using both formative and summative assessments of program outcomes. Quantitative data will include pre-, post-, and exit surveys. Qualitative data will assess the impact of mentoring and program support. This study will be guided by established protocols that have been approved by the N.C. A&T IRB. It is anticipated that our BD Fellows program will significantly impact the retention and graduation rates of underrepresented minority STEM graduate students in our doctoral programs, thus producing a diverse workforce of STEM professionals. Materials from the program recruiting cycle, mentoring workshops, and the structured fellowship application process will be disseminated freely to other LSAMP and minority-serving institutions across the country. Strategies and outcomes of this project will be published in peer-reviewed journals and shared in conference proceedings.more » « less
-
Frantz, Kyle (Ed.)In-person undergraduate research experiences (UREs) promote students’ integration into careers in life science research. In 2020, the COVID-19 pandemic prompted institutions hosting summer URE programs to offer them remotely, raising questions about whether undergraduates who participate in remote research can experience scientific integration and whether they might perceive doing research less favorably (i.e., not beneficial or too costly). To address these questions, we examined indicators of scientific integration and perceptions of the benefits and costs of doing research among students who participated in remote life science URE programs in Summer 2020. We found that students experienced gains in scientific self-efficacy pre- to post-URE, similar to results reported for in-person UREs. We also found that students experienced gains in scientific identity, graduate and career intentions, and perceptions of the benefits of doing research only if they started their remote UREs at lower levels on these variables. Collectively, students did not change in their perceptions of the costs of doing research despite the challenges of working remotely. Yet students who started with low cost perceptions increased in these perceptions. These findings indicate that remote UREs can support students’ self-efficacy development, but may otherwise be limited in their potential to promote scientific integration.more » « less
-
A research and mentoring program was developed to provide local first-generation students, students returning to school after a professional experience, and underrepresented minority students resources and relationships to guide them toward a STEM degree from a four-year university. A multi-tiered mentoring community was formed including direct mentoring from graduate students and faculty advisors, peer mentoring among undergraduate students from different colleges and universities, and high school students to increase the accessibility of research opportunities for this demographic. Local students were recruited from Northwest Arkansas Community College and Upward Bound to combine community college and high school students in a novel manner. The programs were integrated whenever possible to emphasize peer mentoring, including mentoring lunches, research meetings, presentation sessions, conference presentations, and professional development mentoring sessions. ResultsOn the post-program survey, students indicated the community formed in the program supported their STEM identity development, provided them with quality relationships, and developed skills valuable to completion of a STEM degree. This identity development was further evidenced by the students presenting their work at a conference and obtaining additional research positions after the summer program ended. The post-program scores and continued efforts of different demographics of students to pursue STEM highlight the versatility of the multi-tiered mentoring community model to serve students from different ages, backgrounds, and demographics.more » « less
An official website of the United States government

