Abstract In this paper, we study the Cauchy problem of the compressible Euler system with strongly singular velocity alignment. We prove the existence and uniqueness of global solutions in critical Besov spaces to the considered system with small initial data. The local-in-time solvability is also addressed. Moreover, we show the large-time asymptotic behaviour and optimal decay estimates of the solutions as .
more »
« less
Numerical Investigations of Non-uniqueness for the Navier–Stokes Initial Value Problem in Borderline Spaces
We consider the Cauchy problem for the incompressible Navier–Stokes equations in R3 for a one-parameter family of explicit scale-invariant axi-symmetric initial data, which is smooth away from the origin and invariant under the reflection with respect to the xy-plane. Working in the class of axi-symmetric fields, we calculate numerically scale-invariant solutions of the Cauchy problem in terms of their profile functions, which are smooth. The solutions are necessarily unique for small data, but for large data we observe a breaking of the reflection symmetry of the initial data through a pitchfork-type bifurcation. By a variation of previous results by Jia and ˇSver´ak (Invent Math 196(1):233–265, 2013, https://doi.org/10. 1007/s00222-013-0468-x) it is known rigorously that if the behavior seen here numerically can be proved, optimal nonuniqueness examples for the Cauchy problem can be established, and two different solutions can exists for the same initial datum which is divergence-free, smooth away from the origin, compactly supported, and locally (−1)-homogeneous near the origin. In particular, assuming our (finite-dimensional) numerics represents faithfully the behavior of the full (infinitedimensional) system, the problem of uniqueness of the Leray–Hopf solutions (with non-smooth initial data) has a negative answer and, in addition, the perturbative arguments such those by Kato (Math Z 187(4):471–480, 1984, https://doi.org/ 10.1007/BF01174182) and Koch and Tataru (Adv Math 157(1):22–35, 2001, https://doi.org/10.1006/aima.2000.1937), or the weak-strong uniqueness results by Leray, Prodi, Serrin, Ladyzhenskaya and others, already give essentially optimal results. There are no singularities involved in the numerics, as we work only with smooth profile functions. It is conceivable that our calculations could be upgraded to a computer-assisted proof, although this would involve a substantial amount of additional work and calculations, including a much more detailed analysis of the asymptotic expansions of the solutions at large distances.
more »
« less
- PAR ID:
- 10552304
- Publisher / Repository:
- Journal of Mathematical Fluid Mechanics, published by Springer
- Date Published:
- Journal Name:
- Journal of Mathematical Fluid Mechanics
- Volume:
- 25
- Issue:
- 3
- ISSN:
- 1422-6928
- Page Range / eLocation ID:
- 25-46
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract By means of a unifying measure-theoretic approach, we establish lower bounds on the Hausdorff dimension of the space-time set which can support anomalous dissipation for weak solutions of fluid equations, both in the presence or absence of a physical boundary. Boundary dissipation, which can occur at both the time and the spatial boundary, is analyzed by suitably modifying the Duchon & Robert interior distributional approach. One implication of our results is that any bounded Euler solution (compressible or incompressible) arising as a zero viscosity limit of Navier–Stokes solutions cannot have anomalous dissipation supported on a set of dimension smaller than that of the space. This result is sharp, as demonstrated by entropy-producing shock solutions of compressible Euler (Drivas and Eyink in Commun Math Phys 359(2):733–763, 2018.https://doi.org/10.1007/s00220-017-3078-4; Majda in Am Math Soc 43(281):93, 1983.https://doi.org/10.1090/memo/0281) and by recent constructions of dissipative incompressible Euler solutions (Brue and De Lellis in Commun Math Phys 400(3):1507–1533, 2023.https://doi.org/10.1007/s00220-022-04626-0 624; Brue et al. in Commun Pure App Anal, 2023), as well as passive scalars (Colombo et al. in Ann PDE 9(2):21–48, 2023.https://doi.org/10.1007/s40818-023-00162-9; Drivas et al. in Arch Ration Mech Anal 243(3):1151–1180, 2022.https://doi.org/10.1007/s00205-021-01736-2). For$$L^q_tL^r_x$$ suitable Leray–Hopf solutions of the$$d-$$ dimensional Navier–Stokes equation we prove a bound of the dissipation in terms of the Parabolic Hausdorff measure$$\mathcal {P}^{s}$$ , which gives$$s=d-2$$ as soon as the solution lies in the Prodi–Serrin class. In the three-dimensional case, this matches with the Caffarelli–Kohn–Nirenberg partial regularity.more » « less
-
A long-standing fundamental open problem in mathematical fluid dynamics and nonlinear partial differential equations is to determine whether solutions of the 3D incompressible Euler equations can develop a finite-time singularity from smooth, finite-energy initial data. Leonhard Euler introduced these equations in 1757 [L. Euler,Mémoires de l’Académie des Sci. de Berlin11, 274–315 (1757).], and they are closely linked to the Navier–Stokes equations and turbulence. While the general singularity formation problem remains unresolved, we review a recent computer-assisted proof of finite-time, nearly self-similar blowup for the 2D Boussinesq and 3D axisymmetric Euler equations in a smooth bounded domain with smooth initial data. The proof introduces a framework for (nearly) self-similar blowup, demonstrating the nonlinear stability of an approximate self-similar profile constructed numerically via the dynamical rescaling formulation.more » « less
-
Abstract From a unified vision of vector valued solutions in weighted Banach spaces, this paper establishes the existence and uniqueness for space homogeneous Boltzmann bi-linear systems with conservative collisional forms arising in complex gas dynamical structures. This broader vision is directly applied to dilute multi-component gas mixtures composed of both monatomic and polyatomic gases. Such models can be viewed as extensions of scalar Boltzmann binary elastic flows, as much as monatomic gas mixtures with disparate masses and single polyatomic gases, providing a unified approach for vector valued solutions in weighted Banach spaces. Novel aspects of this work include developing the extension of a general ODE theory in vector valued weighted Banach spaces, precise lower bounds for the collision frequency in terms of the weighted Banach norm, energy identities, angular or compact manifold averaging lemmas which provide coerciveness resulting into global in time stability, a new combinatorics estimate forp-binomial forms producing sharper estimates for thek-moments of bi-linear collisional forms. These techniques enable the Cauchy problem improvement that resolves the model with initial data corresponding to strictly positive and bounded initial vector valued mass and total energy, in addition to only a$$2^+$$ moment determined by the hard potential rates discrepancy, a result comparable in generality to the classical Cauchy theory of the scalar homogeneous Boltzmann equation.more » « less
-
Abstract In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and continuous dependence on the data; (ii) low regularity solutions: our uniqueness result holds at the level of Lipschitz velocity and density, while our rough solutions, obtained as unique limits of smooth solutions, have regularity only a half derivative above scaling; (iii) stability: our uniqueness in fact follows from a more general result, namely, we show that a certain nonlinear functional that tracks the distance between two solutions (in part by measuring the distance between their respective boundaries) is propagated by the flow; (iv) we establish sharp, essentially scale invariant energy estimates for solutions; (v) a sharp continuation criterion, at the level of scaling, showing that solutions can be continued as long as the velocity is in$$L^1_t Lip$$ and a suitable weighted version of the density is at the same regularity level. Our entire approach is in Eulerian coordinates and relies on the functional framework developed in the companion work of the second and third authors on corresponding non relativistic problem. All our results are valid for a general equation of state$$p(\varrho )= \varrho ^\gamma $$ ,$$\gamma > 1$$ .more » « less
An official website of the United States government

