Abstract α‐Amino nitriles are versatile structural motifs in a variety of biologically active compounds and pharmaceuticals and they serve as valuable building blocks in synthesis. The preparation of α‐ and β‐functionalized α‐amino nitriles from readily available scaffolds, however, remains challenging. Herein is reported a novel dual catalytic photoredox/copper‐catalyzed chemo‐ and regioselective radical carbocyanation of 2‐azadienes to access functionalized α‐amino nitriles by using redox‐active esters (RAEs) and trimethylsilyl cyanide. This cascade process employs a broad scope of RAEs and provides the corresponding α‐amino nitrile building blocks in 50–95 % yields (51 examples, regioselectivity >95 : 5). The products were transformed into prized α‐amino nitriles and α‐amino acids. Mechanistic studies suggest a radical cascade coupling process.
more »
« less
Synthesis of Non‐canonical Tryptophan Variants via Rh‐catalyzed C–H Functionalization of Anilines
Tryptophan and its non‐canonical variants play critical roles in pharmaceutical molecules and enzymes. Facile access to this privileged class of amino acids from readily available building blocks remains a long‐standing challenge. Here, we report a regioselective synthesis of non‐canonical tryptophans bearing C4‐C7 substituents via Rh‐catalyzed annulation between structurally diverse tert‐butyloxycarbonyl (Boc)‐protected anilines and alkynyl chlorides readily prepared from amino acid building blocks. This transformation harnesses Boc‐directed C–H metalation and demetalation to afford a wide range of C2‐unsubstituted indole products in a redox‐neutral fashion. This umpolung approach compared to the classic Larock indole synthesis offers a novel mechanism for heteroarene annulation and will be useful for the synthesis of natural products and drug molecules containing non‐canonical tryptophan residues in a highly regioselective manner.
more »
« less
- Award ID(s):
- 1847932
- PAR ID:
- 10552455
- Publisher / Repository:
- Angewandte Chemie International Edition
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Enzymes from secondary metabolic pathways possess broad potential for the selective synthesis of complex bioactive molecules. However, the practical application of these enzymes for organic synthesis is dependent on the development of efficient, economical, operationally simple, and well‐characterized systems for preparative scale reactions. We sought to bridge this knowledge gap for the selective biocatalytic synthesis of β‐hydroxy‐α‐amino acids, which are important synthetic building blocks. To achieve this goal, we demonstrated the ability of ObiH, anl‐threonine transaldolase, to achieve selective milligram‐scale synthesis of a diverse array of non‐standard amino acids (nsAAs) using a scalable whole cell platform. We show how the initial selectivity of the catalyst is high and how the diastereomeric ratio of products decreases at high conversion due to product re‐entry into the catalytic cycle. ObiH‐catalyzed reactions with a variety of aromatic, aliphatic and heterocyclic aldehydes selectively generated a panel of β‐hydroxy‐α‐amino acids possessing broad functional‐group diversity. Furthermore, we demonstrated that ObiH‐generated β‐hydroxy‐α‐amino acids could be modified through additional transformations to access important motifs, such as β‐chloro‐α‐amino acids and substituted α‐keto acids.more » « less
-
null (Ed.)The synthesis of diverse N -fused heterocycles, including the pyrido[1,2- a ]indole scaffold, using an efficient pyrone remodeling strategy is described. The pyrido[1,2- a ]indole core was demonstrated to be a versatile scaffold that can be site-selectively functionalized. The utility of this novel annulation strategy was showcased in a concise formal synthesis of three fascaplysin congeners.more » « less
-
Abstract The cytochrome P450 homolog, TxtE, efficiently catalyzes the direct and regioselective aromatic nitration of the indolyl moiety of L‐tryptophan to 4‐nitro‐L‐tryptophan, using nitric oxide (NO) and dioxygen (O2) as co‐substrates. Pathways for such direct and selective nitration of heteroaromatic motifs present platforms for engineering new nitration biocatalysts for pharmacologically beneficial targets, among a medley of other pivotal industrial applications. Precise mechanistic details concerning this pathway are only weakly understood, albeit a heme iron(III)‐peroxynitrite active species has been postulated. To shed light on this unique reaction landscape, we investigated the indole nitration pathway of a series of biomimetic ferric heme superoxide mimics, [(Por)FeIII(O2−⋅)], in the presence of NO. Therein, our model systems gave rise to three distinct nitroindole products, including 4‐nitroindole, the product analogous to that obtained with TxtE. Moreover,15N and18O isotope labeling studies, along with meticulously designed control experiments lend credence to a heme peroxynitrite active nitrating agent, drawing close similarities to the tryptophan nitration mechanism of TxtE. All organic and inorganic reaction components have been fully characterized using spectroscopic methods. Theoretical investigation into several mechanistic possibilities deem a unique indolyl radical based reaction pathway as the most energetically favorable, products of which, are in excellent agreement with experimental findings.more » « less
-
Abstract Dioxetane intermediates readily decompose to chemiluminescent triplet carbonyls, giving rise to what has been paradoxically called photochemistry in the dark. In this issue ofPhotochemistry and Photobiology, Bechara et al. report on mechanistic advances in such a reaction. With the use of horseradish peroxidase for isobutyraldehyde‐derived triplet acetone, light emission from acetone and singlet oxygen can be quenched. The experiments reveal that the reaction depends on oxygen and the amino acid. The analysis reveals that free tryptophan is a target of this form of “carbonyl stress,” with the efficient formation of mono‐, bi‐ and tricyclic compounds (N‐formylkynurenine, indoline, 1λ2‐indole and 3H‐indoles).more » « less
An official website of the United States government

