skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Steady melting in material extrusion additive manufacturing
PurposeA main cause of defects within material extrusion (MatEx) additive manufacturing is the nonisothermal condition in the hot end, which causes inconsistent extrusion and polymer welding. This paper aims to validate a custom hot end design intended to heat the thermoplastic to form a melt prior to the nozzle and to reduce variability in melt temperature. A full 3D temperature verification methodology for hot ends is also presented. Design/methodology/approachInfrared (IR) thermography of steady-state extrusion for varying volumetric flow rates, hot end temperature setpoints and nozzle orifice diameters provides data for model validation. A finite-element model is used to predict the temperature of the extrudate. Model tuning demonstrates the effects of different model assumptions on the simulated melt temperature. FindingsThe experimental results show that the measured temperature and variance are functions of volumetric flow rate, temperature setpoint and the nozzle orifice diameter. Convection to the surrounding air is a primary heat transfer mechanism. The custom hot end brings the melt to its setpoint temperature prior to entering the nozzle. Originality/valueThis work provides a full set of steady-state IR thermography data for various parameter settings. It also provides insight into the performance of a custom hot end designed to improve the robustness of melting in MatEx. Finally, it proposes a strategy for modeling such systems that incorporates the metal components and the air around the system.  more » « less
Award ID(s):
1914651
PAR ID:
10552492
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
NSF PAR
Date Published:
Journal Name:
Rapid Prototyping Journal
Volume:
30
Issue:
1
ISSN:
1355-2546
Page Range / eLocation ID:
85 to 94
Subject(s) / Keyword(s):
Material extrusion, Fused filament fabrication (FFF), Thermal modeling, Melting, Numerical simulation, Thermoplastic polymers
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Die-swell is a flow effect that occurs in polymer extrusion whereby the material experiences rapid stress and dimensional changes upon exiting the nozzle orifice. Material extrusion additive manufacturing is no exception, and this effect influences the final dimensions of the printed road and imparts residual stresses. Die-swell is measured via a custom test cell that uses optical and infrared cameras and an instrumented hot end with an infeed pressure load cell. The instrumented hot end is mounted onto a stationary extruder above a conveyor to simulate printhead translation at steady state conditions for a wide range of volumetric flow rates. Investigated factors for an acrylonitrile butadiene styrene (ABS) filament include volumetric flow rate (0.9 mm3/s to 10.0 mm3/s), hot end temperature setpoint (200–250 ◦C), and nozzle orifice diameter (0.25–0.60 mm). The die-swell increases as a function of the volumetric flow rate and shear stress but decreases as a function of the hot end temperature setpoint and nozzle orifice diameter. For modelling, an implementation of the Tanner model for die swell displays good agreement with experimental results. The model also demonstrates that the same proportionality constant, k_N1 , which relates first normal stress difference to shear stress, can be used for different nozzle orifice diameters with the same length to diameter ratios, and that kN1 increases as a function of hot end temperature setpoint as expected with the rheological concept of time temperature superposition. 
    more » « less
  2. Dataset includes transient torque, infeed pressure, melt pressure, and melt temperature that were acquired by an instrumented hot end for material extrusion additive manufacturing of acrylonitrile butadiene styrene (ABS). Data were collected according to a design of experiments wherein the volumetric flow rate, temperature setpoint, and the nozzle orifice diameter were varied one factor at a time. 
    more » « less
  3. Current material extrusion systems can produce complex parts but lack instrumentation for observability and control. To investigate methods for observing the material extrusion process, a printer is instrumented to examine the dependency chain from the motor shaft torque to the infeed load and finally the melt pressure and temperature. The transient rheological and thermal behavior of the material extrusion process and the effect of volumetric flow rate, nozzle orifice diameter, and temperature setpoint on the pressure estimate from each point in the dependency chain are reported. The work also presents pressure predictions from COMSOL Multiphysics non-isothermal flow simulations and an analytical (Poiseuille) model. The pressure estimated by the motor shaft torque is greater than the downstream pressure estimated by the infeed load, which is greater than the downstream melt pressure in the hot end. In other words, both the torque sensor and the infeed load significantly overpredict the melt pressure. Significant variations in the pressures are also observed and explained. The findings demonstrate low and high frequency variation in the process, which can be attributed to gear eccentricity and teeth-to-filament engagement. The melt pressure variation is also observed to increase significantly at lower temperature set-points and higher flow rates, both of which reduce the melt temperature and thereby increase the viscosity. The increase in viscosity tends to reduce the viscous damping such that the variations in the filament infeed are transmitted through the hot end to the extrudate. 
    more » « less
  4. PurposePowder bed density is a key parameter in powder bed additive manufacturing (AM) processes but is not easily monitored. This research evaluates the possibility of non-invasively estimating the density of an AM powder bed via its thermal properties measured using flash thermography (FT). Design/methodology/approachThe thermal diffusivity and conductivity of the samples were found by fitting an analytical model to the measured surface temperature after flash of the powder on a polymer substrate, enabling the estimation of the powder bed density. FindingsFT estimated powder bed was within 8% of weight-based density measurements and the inferred thermal properties are consistent with literature findings. However, multiple flashes were necessary to ensure precise measurements due to noise in the experimental data and the similarity of thermal properties between the powder and substrate. Originality/valueThis paper emphasizes the capability of Flash Thermography (FT) for non-contact measurement of SS 316 L powder bed density, offering a pathway to in-situ monitoring for powder bed AM methods including binder jetting (BJ) and powder bed fusion. Despite the limitations of the current approach, the density knowledge and thermal properties measurements have the potential to enhance process development and thermal modeling powder bed AM processes, aiding in understanding the powder packing and thermal behavior. 
    more » « less
  5. PurposeSurface quality and porosity significantly influence the structural and functional properties of the final product. This study aims to establish and explain the underlying relationships among processing parameters, top surface roughness and porosity level in additively manufactured 316L stainless steel. Design/methodology/approachA systematic variation of printing process parameters was conducted to print cubic samples based on laser power, speed and their combinations of energy density. Melt pool morphologies and dimensions, surface roughness quantified by arithmetic mean height (Sa) and porosity levels were characterized via optical confocal microscopy. FindingsThe study reveals that the laser power required to achieve optimal top surface quality increases with the volumetric energy density (VED) levels. A smooth top surface (Sa < 15 µm) or a rough surface with humps at high VEDs (VED > 133.3 J/mm3) can serve as indicators for fully dense bulk samples, while rough top surfaces resulting from melt pool discontinuity correlate with high porosity levels. Under insufficient VED, melt pool discontinuity dominates the top surface. At high VEDs, surface quality improves with increased power as mitigation of melt pool discontinuity, followed by the deterioration with hump formation. Originality/valueThis study reveals and summarizes the formation mechanism of dominant features on top surface features and offers a potential method to predict the porosity by observing the top surface features with consideration of processing conditions. 
    more » « less